
Reproducible and Efficient Deep Reinforcement Learning

A Thesis
Submitted to the Faculty

of
Drexel University

by
Shengyi Huang

in partial fulfillment of the
requirements for the degree

of
Doctor of Philosophy

June 2023

© Copyright 2023
Shengyi Huang.

This work is licensed under the terms of the Creative Commons Attribution-ShareAlike
4.0 International license. The license is available at
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

ii

Acknowledgments

My journey to achieving a Ph.D. has been a challenging and fun ride. To have been able to navigate
through it and see the light at the other end of the tunnel, I am grateful to many individuals for
their kind support along the way.

Foremost, I would like to express my sincere gratitude to my advisor, Santiago Ontañón. His
mentorship has been invaluable, providing me with guidance and support throughout my research
and career progression. My thanks also go to my dissertation committee members, Edward Kim,
Vasilis Gkatzelis, Shahin Jabbari, and Simon Lucas.

To my friends and colleagues at the GAIMS lab, I offer my heartfelt thanks. Our lively discussions
and collaborations have always been a source of enjoyment and inspiration. I would like to specifically
mention David Grethlein and Zuozhi Yang, whose companionship has been truly valuable during
this journey.

I would like to recognize Luladay Price, my mentor during my internship at Curai Health. This
being my first industrial internship, I learned much about machine learning engineering and research
in the industry. Additionally, I am grateful for my manager François Huet and colleagues Anitha
Kannan, Li Deng, Luke Diliberto, Namit Katariya, Rhys Compton, and Vignesh Venkataraman.

My appreciation also extends to my mentor, Morgan McGuire, for his support during my time at
Weights and Biases. There, I had the opportunity to explore and create videos on deep reinforcement
learning topics. My colleagues Angelica Pan, Scott Condron, Ivan Goncharov, Jeremy Salwen, Cayla
Sharp, Lavanya Shukla, and Aakarshan Chauhan all deserve my thanks. I am also grateful to
Weights and Biases for providing a free academic license which has been instrumental in tracking
my experiments.

At NVIDIA, I received immense support from my mentor, Markel Sanz Ausin, in learning to
apply deep reinforcement learning to simulated robotics control in Isaac Gym. My sincere thanks go
out to my manager Ashwath Aithal and the Isaac Gym Team Viktor Makoviychuk, Arthur Allshire,
Aleksei Petrenko, and Gavriel State.

Furthermore, I extend my gratitude to Ben Kasper, my mentor at Riot Games. He has been
instrumental in supporting me as I applied deep reinforcement learning to state-of-the-art games.
He is always willing to provide detailed feedback on my work which has helped me learn to write
better code. My thanks also go to my manager Albert Wang and my dedicated team members Phil
Wardlaw, Tiffany Hwu, Wesley Kerr, Chase McDonald, Nate Tsang, and Ran Cao.

My work also greatly benefited from working with my collaborators. I would like to especially
thank Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, Weixun Wang, Chang Ye,
Jeff Braga, Dipam Chakraborty, Kinal Mehta, João G.M. Araújo, Chris Bamford, Lukasz Grela,
Jiayi Weng, Min Lin, Rujikorn Charakorn, Zhongwen Xu, Bo Liu, Denys Makoviichuk, Viktor
Makoviychuk, Zichen Liu, Shuicheng Yan.

At a personal level, my partner Siyi Lin has been a constant source of support. Her encour-
agement and belief in my abilities, particularly during challenging times, have greatly helped me
overcome numerous difficulties in this journey.

Finally, my deepest gratitude is reserved for my parents. They have always been there for me,
and I would not be able to be where I am today without their enduring love and unwavering support.

iii

Table of Contents

List of Tables . ix

List of Figures . x

Abstract . xiii

1. Introduction . 1

1.1 Reinforcement Learning . 1

1.2 Deep Learning . 2

1.3 Deep Reinforcement Learning . 2

1.4 Problem Statement . 3

1.5 Contributions . 4

2. Background . 7

2.1 Markov Decision Processes . 7

2.2 The Learning Problem . 8

2.3 Common RL Environments . 9

2.4 Value-based Methods . 10

2.4.1 Deep Value-based Methods . 11

2.5 Policy-based Methods . 13

2.5.1 Deep Actor-critic Methods . 16

2.5.2 Deep Off-policy Actor-critic Methods . 18

2.6 Acknolwedgement . 18

I Reproducibility in Deep Reinforcement Learning 19

3. Demystifying PPO . 20

3.1 Authorship . 20

3.2 Motivation . 20

3.3 Background . 21

iv

3.4 38 Implementation Details . 23

3.5 Discussions . 24

3.5.1 Does modularity help RL libraries? . 25

3.5.2 Is asynchronous PPO better? . 25

3.5.3 Solving Pong in 5 minutes with PPO + Envpool 26

3.5.4 Request for Research . 27

3.6 Conclusion . 28

4. CleanRL . 29

4.1 Authorship . 29

4.2 Motivation . 29

4.3 Single-file Implementations . 30

4.4 Documentation and Benchmark . 31

4.5 When to Use CleanRL . 31

5. Cleanba . 33

5.1 Authorship . 33

5.2 Motivation . 33

5.3 Background . 34

5.4 Preliminaries . 34

5.5 Reproducibility Issues in IMPALA . 36

5.5.1 Non-determinisim of IMPALA’s Architecture . 37

5.5.2 Algorithmic Reproducibility Issues . 37

5.6 Towards Reproducible Distributed DRL . 38

5.6.1 Decoupling hyperparameters and hardware settings 39

5.6.2 Deterministic Rollout Data Composition . 39

5.7 Experiments . 40

5.7.1 Comparison with moolib’s IMPALA . 41

5.7.2 Comparison with monobeast’s IMPALA . 41

TABLE OF CONTENTS TABLE OF CONTENTS

v

5.7.3 Comparison with CleanRL’s PPO . 42

5.8 Conclusion . 42

II Efficient Deep Reinforcement Learning Testbeds and Techniques 43

6. Game Representation . 44

6.1 Motivation . 44

6.2 Background . 44

6.3 Gym-µRTS: Comparing Game Representations . 46

6.3.1 Global Representation . 47

6.3.2 Local Representation . 48

6.3.3 Reward Function . 49

6.4 Experimental Study . 49

6.4.1 Experimental Setup . 50

6.4.2 Experimental Results . 51

6.4.3 Visual Behavior of Agents . 52

6.5 Discussion . 53

7. Invalid Action Masking . 54

7.1 Motivation . 54

7.2 Background . 55

7.3 Invalid Action Masking . 55

7.3.1 Masking Still Produces a Valid Policy Gradient . 57

7.4 Experimental Study . 57

7.4.1 Evaluation Environment . 58

7.4.2 Training Algorithm . 59

7.4.3 Strategies to Handle Invalid Actions . 60

7.4.4 Evaluation Metrics . 60

7.4.5 Evaluation Results . 60

7.5 Conclusions . 61

TABLE OF CONTENTS TABLE OF CONTENTS

vi

8. Action Guidance . 62

8.1 Motivation . 62

8.2 Background . 63

8.3 Action Guidance . 64

8.3.1 Practical Algorithm . 65

8.3.2 Positive Learning Optimization . 65

8.4 Experimental Study . 66

8.4.1 Tasks Description . 66

8.4.2 Agent Setup . 66

8.4.3 Experimental Results . 67

8.5 Discussion . 69

9. Unit-level Control . 70

9.1 Authorship . 70

9.2 Motivation . 70

9.3 Background . 72

9.4 Gym-µRTS: Unit-level Control . 73

9.4.1 Observation Space. 73

9.4.2 Action Space. 73

9.4.3 The Action Spaces of Gym-µRTS and PySC2 . 74

9.4.4 Reward Function . 75

9.5 Experimental Study . 75

9.5.1 Action Composition . 76

9.5.2 Invalid Action Masking . 76

9.5.3 Other augmentations . 77

9.6 Discussion . 78

9.6.1 Conclusions and Future Work . 80

10.Conclusion . 81

TABLE OF CONTENTS TABLE OF CONTENTS

vii

10.1 Contributions . 81

10.2 Future Work . 81

III Appendix . 83

Appendix A: CleanRL . 84

A.1 Benchmark experiments . 84

A.1.1 Proximal Policy Optimization Variants and Performance 84

A.1.2 Deep Deterministic Policy Gradient Variant and Performance 85

A.1.3 Twin-Delayed Deep Deterministic Policy Gradient Variant and Performance 85

A.1.4 Soft Actor-Critic Variant and Performance . 85

A.1.5 Phasic Policy Gradient Variant and Performance 86

A.1.6 Deep Q-learning Variants and Performance . 86

A.1.7 Categorical Deep Q-learning Variants and Performance 86

A.2 Interactive Shell . 86

A.3 Maintaining Single-file Implementations . 87

A.4 W&B Editing Panel . 89

A.5 Stepping Through Stable-baselines 3 Code with a Debugger 89

Appendix B: Gym-µRTS . 91

B.1 Estimated AlphaStar cost . 91

B.2 Learning curves and match results . 91

Appendix C: Cleanba . 99

C.1 Detailed experiment settings . 99

C.2 moolib Experiments . 99

C.3 torchbeast logs . 101

C.4 Large Batch Size Training . 104

C.5 torchbeast logs . 104

Bibliography . 111

viii

TABLE OF CONTENTS TABLE OF CONTENTS

ix

List of Tables

3.2 PPO’s performance in popular DRL libraries. 22

5.1 The different architectures and their rollout data compositions. 39

6.1 The list of feature maps and their descriptions. 47

6.2 The list of experiment parameters and their values. 50

6.3 The list of representations and their performance according to our metrics. The “-” in
tfirst return indicates the agent never returned any resources. 51

7.1 Observation features and action components. 57

7.2 Results averaged over 4 random seeds. The symbol “-” means “not applicable”. Higher
is better for repisode and lower is better for anull, abusy, aowner, tsolve, and tfirst. 59

8.1 The average sparse return achieved by each training strategy in each task over 10 random
seeds. 68

9.1 Observation features and action components. ar = 7 is the maximum attack range. . . . 74

9.2 The previous µRTS competition bots. 78

C.1 PPO hyperparameters. 99

C.2 IMPALA hyperparameters. 99

x

List of Figures

2.1 The taxonomy of popular DRL algorithms. 9

2.2 Screenshots of Breakout and MuJoCo . 10

2.3 Median human-normalized performance across 57 Atari games of various learning
methods, reproduced from the deepmind/dqn zoo GitHub repository under the Apache2
License. 12

3.1 Benchmark of PPO + Envpol in Atari tasks. 26

3.2 The performance of various high-throughput RL libraries in Pong. 27

4.1 Filediff in Visual Studio Code: left click select ppo atari.py then cmd/ctrl + left click
select ppo continuous action.py to highlight neural network architecture differences of
PPO when applying to Atari games and MuJoCo tasks. 30

5.1 The pseudocode for IMPALA architecture (left) and Cleanba’s architecture (right). Col-
ors are used to highlight the code differences between the two architectures. The rollout(params,
num envs) function collects rollout data on num envs independent environments for M
(num steps) steps. 37

5.2 Episodic return and value function loss of two sets of monobeast experiments that use
the exact same hyperparameters, but the orange set of experiments has its learner update
manually delayed for 1 second. 38

5.3 Top figure: the median human-normalized scores of Cleanba variants compared with
moolib. Middle figure: the IQM human-normalized scores and performance profile1.
Bottom figure: the average runtime in minutes and aggregate human normalized score
metrics with 95% stratified bootstrap CIs. 40

5.4 The episodic returns of Cleanba variants compared with moolib. 41

6.1 A screenshot of µRTS. Square units are “bases” (light grey, that can produce workers),
“barracks” (dark grey, that can produce military units), and “resources mines” (green,
from where workers can extract resources to produce more units), the circular units are
“workers” (small, dark grey) and military units (large, yellow or light blue). 45

6.2 The local feature maps of shape (2w + 1) × (2w + 1) = 3 × 3 outlined in red of the an
unit (the red circle) when w = 1. The blue crosses indicate the cells are the walls of the
game map. 48

6.3 The neural network architecture that demonstrates the flow from the observation vector
to action probabilities. The number at each box suggests the input or output shapes . 49

6.4 The mini-games that focuses on harvesting resources with different map sizes of 4 × 4,
6× 6, and 8× 8. 49

6.5 Episode rewards (y axis) as a function of training time steps (x-axis) for the 3 map sizes. 52

xi

7.1 A screenshot of µRTS. Square units are “bases” (light grey, that can produce workers),
“barracks” (dark grey, that can produce military units), and “resources mines” (green,
from where workers can extract resources to produce more units), the circular units are
“workers” (small, dark grey) and military units (large, yellow or light blue), and on the
right is the 10× 10 map we used to train agents to harvest resources. The agents could
control units at the top left, and the units in the bottom left will remain stationary. . . 55

7.2 The first row shows the episodic return over the time steps, and the second row shows
the Kullback–Leibler (KL) divergence between the target and current policy of PPO over
the time steps. The shaded area represents one standard deviation of the data over 4
random seeds. Curves are exponentially smoothed with a weight of 0.9 for readability. . 58

8.1 Screenshots of learned behaviors of agents trained with shaped reward and action guidance 64

8.2 The faint lines are the actual sparse return of each seed for selected strategies in Produce-
CombatUnits; solid lines are their means. The left figure showcase the sample-efficiency
of action guidance; the right figure is a motivating example for PLO. 67

8.3 The screenshot shows the typical learned behavior of agents in the task of ProduceCom-
batUnits. (a) shows an agent trained with shaped reward function RA1

learn to only
produce combat units once the resources are exhausted (i.e. it produces three combat
units at t = 1410). In contrary, (b) shows an agent trained with action guidance learn to
produce units and harvest resources concurrently (i.e. it produces three combat units at
t = 890). Click on the link below figures to see the full videos of trained agents. 69

9.1 Screenshot of our best-trained agent (top-left) playing against CoacAI (bottom-right), the
2020 µRTS AI competition champion. Strategy-wise, our agent usually defeats CoacAI
by harvesting resources (green squares) efficiently using two workers (dark gray circles),
doing a highly optimized worker rush that takes out the enemy base in the bottom right
(shown with 50% damage), followed by a transition to the mid and late game by producing
combat units (colored circles) from the barracks (dark gray squares). The blue and red
border suggest the unit is owned by player 1 and 2, respectively. See additional combat
videos here: https://bit.ly/3llOhex . 71

9.2 Demonstration of how actions are assigned under UAS and Gridnet. 72

9.3 Ablation study for UAS and Gridnet. 75

9.4 Neural network architectures for Gridnet and UAS. The green boxes are (conditional)
inputs from the environments, blue boxes are neural networks, red boxes are outputs,
and purple boxes are sampled outputs. 77

9.5 Match results: the y-axis shows the number of losses, ties, and wins against AIs listed in
Table 9.2. The Random bot’s match result is excluded for presentation purposes. 78

9.6 The shaped and sparse return over training steps for all 4 random seeds of PPO + invalid
action masking for Gridnet and UAS. The curve is smoothed using exponential moving
average with weight 0.99. 79

B.1 UAS learning curves. 92

B.2 Gridnet learning curves. 93

B.3 Gridnet selfplay learning curves. 94

LIST OF FIGURES LIST OF FIGURES

https://bit.ly/3llOhex

xii

B.4 UAS match results. 95

B.4 UAS match results. 96

B.5 Gridnet match results. 97

B.5 Gridnet match results. 98

C.1 The learning curves of the experiments. 108

C.2 Top figure: the median human-normalized scores of the two sets of moolib experiments.
Middle figure: the IQM human-normalized scores and performance profile1. Bottom
figure: the average runtime in minutes and aggregate human normalized score metrics
with 95% stratified bootstrap CIs. 109

C.3 Cleanba’s results from large batch size training. b=15360 denotes batch size=15360. . 109

C.4 Cleanba’s SPS scaling results from large batch size training. 110

LIST OF FIGURES LIST OF FIGURES

xiii

Abstract
Reproducible and Efficient Deep Reinforcement Learning

Shengyi Huang
Santiago Ontañón, Ph.D.

Deep reinforcement learning (DRL), a paradigm by which agents learn how to do tasks through trial
and error, has achieved great success in many domains. Researchers have successfully applied DRL
to train autonomous agents that learn to play video games from pixels and control simulated robots,
all the way up to design microchips. Despite these impressive accomplishments, DRL algorithms
can be hard to reproduce due to their sensitivity to hyperparameters and seemingly unimportant
implementation details. Additionally, running DRL algorithms can be computationally inefficient,
especially in challenging domains such as real-time strategy (RTS) games which pose a significant
challenge to DRL due to their large action space, sparse rewards, and partial observability. This
thesis makes contributions toward making DRL more reproducible and efficient. First, we study how
implementation details of DRL, often left out of academic publications, have a significant impact
on algorithm behavior. We then propose a new framework to mitigate reproducibility issues, and
this framework is encapsulated in a DRL library called CleanRL. We further identify and address
reproducibility issues in distributed DRL with a new platform called Cleanba. Second, we build Gym-
µRTS, an efficient RTS testbed for conducting DRL novel research topics, such as game presentation
designs and efficient learning techniques for dealing with invalid actions and sparse rewards. We
also propose methods to scale agents to perform unit-level control in RTS games, lifting the artificial
action space restriction of past works.

1

Chapter 1: Introduction

Deep reinforcement learning (DRL), a paradigm by which agents learn how to do tasks through trial
and error, has achieved great success in many domains. Researchers have successfully applied DRL
to train autonomous agents that learn to play video games from pixels and control simulated robots,
all the way up to designing microchips. Despite these impressive accomplishments, many open
challenges still need to be addressed. First, the field of DRL suffers from a significant reproducibility
problem. The DRL algorithms are usually brittle to hyperparameters and seemingly unimportant
implementation details, which could lead to incorrect baselines and unverifiable results in new papers.
Second, DRL algorithms can be quite computationally expensive and inefficient to run — Rainbow
DQN takes more than 14,000 GPU hours to train agents in 57 Atari games. Third, scaling DRL
to some domains, such as Real-time Strategy (RTS) games, remains challenging, primarily due to
their large action space, sparse rewards, and partial observability. While the recent work AlphaStar
impressively demonstrated a DRL agent that could defeat professional players in StarCraft (a popular
RTS game), AlphaStar used 3072 TPUs and 50,400 CPUs for 44 days to train and poses artificial
restrictions on the agent to share the human-style action space, making it impossible to issue different
actions to different units simultaneously.

The contributions of this thesis consist of two prongs. The first part of this thesis addresses
the reproducibility challenge. We study how implementation details of DRL, often left out of aca-
demic publications, have a significant impact on algorithm behavior. In particular, we identified 37
implementation details that are relevant to reproducing Proximal Policy Optimization (PPO)’s per-
formance, but many of them are left out of the original paper. We then propose a new framework to
mitigate reproducibility issues, and this framework is encapsulated in a DRL library called CleanRL.
We also identify reproducibility issues in popular distributed DRL frameworks and address them
with a new architecture called Cleanba that performs competitively with existing distributed DRL
systems. The second part of this thesis addresses the efficiency challenge by making more efficient
DRL testbeds and researching more efficient DRL techniques. We introduce Gym-µRTS, an effi-
cient RL interface to the popular µRTS testbed for RTS research. By leveraging Gym-µRTS, we
research game presentation designs and efficient learning techniques for dealing with invalid actions
and sparse rewards. We also propose methods to scale agents to perform unit-level control, lifting
the artificial action space restriction of AlphaStar.

1.1 Reinforcement Learning

Reinforcement learning (RL) is a learning framework through which an agent tries to learn specific
tasks by trial-and-error interaction with the environment2. The idea is that the agent will observe
the environment, perform actions, and get reward signals from the environment that suggest if the
executed actions are good or bad. By repeating these three steps, the agent could improve its actions
to maximize the reward signal via trial and error.

Consider an example where we try to teach a dog to shake hands with humans using reinforcement
learning. The dog acts as an agent and perceives its surrounding environments and humans as the
observation. The dog might observe that the human would hold a treat in their hand. By random
chance, the dog may perform the action of trying to paw at the treat, and then the human would
immediately reward the dog with a treat and shout “shake”. By repeating this process, the dog
learns to associate the sound of “shake” and the behavior of pawing at a human’s hand with rewards;
in the human’s perspective, the dog learns to shake when the human says “shake.”

While RL refers to the learning framework, the term is often used as a shorthand for RL algo-
rithms, which would be considerably different. Using the aforementioned example, we are usually
more interested in how the dog associates observations and actions with rewards, which is certainly

2

one of the dog’s biological capabilities. More specifically, RL algorithms refer to computational al-
gorithms that continuously take the environment interactions (e.g., observations, actions, rewards)
as inputs and train an agent to output actions given observations. The two most common classes of
RL algorithms are as below:

1. Policy iteration2 (Chap. 4.3) — this type of algorithm lets the agent learn a policy directly
by increasing the probability of actions that lead to a better sum of future rewards.

2. Value iteration2 (Chap. 4.4) — this type of algorithm lets the agent learn the values of the
states so that the agent can choose actions that lead to states with better values.

1.2 Deep Learning

Deep learning (DL) is a subfield of machine learning (ML) that is based on artificial neural net-
works (ANNs). Inspired by prior findings in neuroscience that mental activities consist primarily of
activities from networks of brain cells called neurons 3, ANNs aim to model how learning happens
in the brain4;5. ANNs are composed of a mathematical model of neurons that, roughly speaking,
“fires” when a linear combination of inputs and weights exceeds some threshold4;6. More formally,
the neuron has some inputs xi, weights wi, biases bi, and an activation function g. The neuron
computation can be modeled as follows:

h = g

(∑
i

xiwi + bi

)

Next, we can construct an ANN by connecting neurons. One of the most common ANN is a feed-
forward network with only connections in one direction4. This means some previous neurons will
generate outputs as inputs for following neurons, and that the outputs of the following neurons are
never used as inputs for previous neurons. Feed-forward networks are usually organized by layers
of nodes, and the number of nodes in the layers is called hidden units. The term “deep learning”
originates from investigating neural networks with many more layers than traditionally used5.

We can represent the feed-forward network as a function f with θ encoding its weights and biases
that take in some input to produce an output y; the process is denoted as fθ(x) = y. fθ can help
approximate some arbitrary function f∗. Note that g is usually chosen to be a non-linear function
such as the hyperbolic tangent tanh so that the networks can model some non-linear f∗ such as
the XOR function5. Given some dataset D that contains example inputs xi and outputs ŷi of f

∗,
we can draw data xi from it and calculate some predicted yi. We can use a loss function L to
measure the prediction error

∑
i L(yi, ŷi). An example of the loss function is the mean squared loss

(MSE) function which is defined as L(xi, yi) = (xi − yi)
2. Then we can use calculate the gradient

of the prediction error w.r.t. the weights and biases θ using the backpropagation algorithm7. Doing
gradient descent will produce a new set of weights and biases that will likely produce less prediction
error, corresponding to the process in which the feed-forward networks learn.

DL has been on the rise for the past decade, permeating all kinds of applications. Incredible
scientific breakthroughs have emerged, especially in computer vision8, natural language processing9,
and reinforcement learning which we will discuss in the next section.

1.3 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is an emerging field that augments RL with deep learning
techniques. Researchers have extended the traditional RL algorithms such as Q-learning10 (an
example of value iteration methods) with deep neural networks, which produces an algorithm called
deep Q-learning (DQN) that can learn to play Atari games from pixel inputs11. Atari’s state space
of pixels has a very large dimension. For example, if we represent the state as a grayscale image
with resolution 84 × 84, and where each pixel can take 256 different values, then we would have
256(84∗84) ≃ 3.476 ∗ 1016992 states. It is not practical to account for these many states in the

Chapter 1: Introduction 1.2 Deep Learning

3

computer’s memory, so functional approximations are often used12. DQN uses a deep convolutional
neural network13 to approximate the Q-value of the states and two additional techniques to stabilize
training, which we will discuss more in Section 2.4.1. Mnih et al. 11 show that DQN can outperform
the best linear learner in past work12 in Atari games, and it can train agents to surpass human-level
performance in more than half of the games.

DQN has been a pioneering work that inspired countless development in the field of DRL. Simi-
larly, researchers have successfully extended policy gradient14 algorithms (examples of policy itera-
tion methods) with deep learning techniques to perform simulated robotics manipulations and Atari
games15;16.

1.4 Problem Statement

DRL is a fast-moving research area. Despite the intensive research in this field, many open challenges
still need to be addressed. Below are some open problems motivating the work presented in this
thesis:

1. Reproducibility: The field of DRL suffers a major reproducibility problem, which have
resulted in unverifiable results and wasted effort. Specifically, this problem stems from the
following three major causes.

(a) Brittleness. DRL methods are brittle to hyperparameter settings. For example, the
number of hidden neurons in the neural network (NN) architecture could hugely impact
the performance and, even more strangely, increasing the size of the NN does not nec-
essarily result in better performance17. Additionally, DRL methods can be unreliable
across runs conducted with different random seeds17;18.

(b) Unaccounted implementation details. A few foundational DRL algorithms such as
Trust Region Policy Optimization (TRPO)19 and Proximal Policy Optimization (PPO)16

have included seemingly small optimization techniques only found in their open source
implementations but not described in the original paper. However, later works have found
these optimization techniques can have a surprisingly large impact on the performance
of the algorithms – they could stabilize the training20, help the algorithm reach better
empirical results21, and offer utilities such as gracefully handling long-horizon environ-
ments22.

(c) Under-controlled evaluation environments. It is not uncommon for a simulation
environment to evolve over time, fixing bugs and adding new features. For example, the
MuJoCo Gym environments16 are popular among researchers yet there are 4 versions
(v1, v2, v3, v4). Sometimes the version difference could cause a series of reproducibility
issues. For example, when we introduced the v4 environments in Gym, fixing a contact
force bug actually resulted in poorer performance1 and poses a reproducibility challenge.

2. Efficiency: While there has been tremendous progress in the field of DRL, efficiency remains
an ongoing issue and training good agents in many types of games can still be quite computa-
tionally expensive. Consider the ALE as an example, one of the most popular testbed for DRL
algorithms. A common evaluation criteria requires running experiments for a collection of 57
Atari games. On one hand, many DRL algorithms take a long wall-time to train. For example,
Rainbow DQN23 takes roughly 250 GPU hours per game, which sums up to GPU 14250 for
the 57 Atari games24. On the other hand, other wall-lock-time-faster DRL algorithms are
computationally / architecturally expensive. For instance, SEED RL’s R2D225;26 uses 8 Ten-
sor Processing Unit (TPU) v3 cores, 213 CPU actors for 40 hours per game. To make matters
worse, the common evaluation criteria often requires researchers to run at least 3 random seeds
to account for stochasticity of the environments and algorithms, so the computational budget
is instantly tripled.

1See discussion at https://github.com/openai/gym/pull/2762#discussion_r853488897

Chapter 1: Introduction 1.4 Problem Statement

https://github.com/openai/gym/pull/2762#discussion_r853488897

4

In other types of DRL applications such as in Real-time Strategy games27, the computational
costs can be astronomical. Notably, Vinyals et al.27 reported that AlphaStar has used 3072
TPU course and 50,400 preemptible CPU cores to do the training for a duration of 44 days,
which approximately equates to 3.6 million dollars using public pricing on Google Cloud plat-
form2.

As a result, these algorithms and environments could be less undesirable because they cost an
arm and leg for researchers without big research labs footing the bill. Besides, as suggested by
Obando-Ceron and Castro28, this practice is less inclusive to the broader range of researchers
with less compute budget. Furthermore, this magnitude of computations also produces huge
carbon footprint, which is bad for the environment. Last but not least, large computational
requirement also makes it harder to debug experiments and iterate research ideas faster.

3. Real-time Strategy Games: RTS games pose a significant challenge for game Artificial
Intelligence (AI)29;30. They are complex due to a variety of reasons: (1) players need to issue
actions in real-time, which means agents have minimal time to produce what is the following
action to execute, (2) most RTS games are partially observable, i.e.,, a player might not always
able to observe the opponents’ strategies and actions, (3) RTS games have huge action spaces.
In the context of RL, additional challenges include (4) dealing with extremely sparse rewards,
(5) designing efficient observation and action space representations31, and (6) generalization
across an unseen set of opponents and maps. The open problems of sparse rewards and
generalization extend beyond RTS games:

(a) Sparse Rewards: Some tasks have very sparse rewards. For example, consider the task
of learning to win professional players in chess. Because of the unlikeliness of winning a
game by chance during the early stages of training, it is improbable that the agent could
even obtain the reward of winning via trial and error. As a result, the agent would only
receive negative reward signals from which it can learn nothing.

(b) Generalization: In the field of RL, it is common to evaluate agents on the environments
they are trained on32. As a result, the agents usually overfit the training environment.
For example, if the agent learns to play video games from looking at pixels, they could
overfit the background features instead of the core entities32. In robotics tasks, the agent
usually overfits the dynamics such as the fraction coefficient. Because of these overfitting
behaviors, the agents often fail in environments they have never seen before.

1.5 Contributions

The contributions of this thesis consist of two prongs. Part I of this thesis addresses the repro-
ducibility challenge by studying the importance of implementation details and proposing a new
framework that promotes the reproducibility and transparency of DRL algorithms. In Chapter 3,
we led the investigation of Proximal Policy Optimization (PPO)16;33 and summarized 37 implemen-
tation details that are relevant to reproducing PPO’s performance, whereas most of these details are
not explicitly listed out in the original PPO paper. In Chapter 4, we introduce a new framework
that puts tremendous emphasis on the reproducibility and transparency of implementation details
of DRL algorithms. The framework is encapsulated in a library called CleanRL, which produces
standalone and self-contained implementations of algorithm variants that are easier to understand,
reproduce, and customize for research needs. In Chapter 5, we study reproducibility issues in
the context of distributed DRL. We show that popular distributed DRL architecture such as IM-
PALA34 can have reproducibility issues even if random seeds are controlled. We then propose a
new distributed DRL architecture called Cleanba that is highly reproducible in different hardware
configurations.

Part II of this thesis addresses the efficiency challenge by making more efficient DRL testbeds
and researching more efficient DRL techniques. We introduce Gym-µRTS, an efficient RL interface

2see Appendix B.1 for calculation details

Chapter 1: Introduction 1.5 Contributions

5

to the popular µRTS testbed for RTS research. Despite having a simplified game, µRTS still captures
the core challenges of RTS games. In Chapter 6, we compare different observation and action space
representations for µRTS. In Chapter 7, we look into invalid action masking, an optimization
technique used in high-profile prior works but not described in detail. Our work provides a detailed
description of how invalid action masking works, establishes a sound theoretical foundation, and
presents empirical evidence to show this technique scales well. In Chapter 8, we propose a novel
method called “action guidance” that can better leverage shaped rewards and sparse rewards at the
same time to make optimizing against the real objective. InChapter 9, we leverage our accumulated
knowledge to scale our RL-based approach to the full-game mode of µRTS — that is, to control all
the player-owned units simultaneously, which allows us to evaluate against bots in previous µRTS
competition and discover novel strategies. Finally, we summarize the thesis and discuss future work
in Chapter 10.

List of publications

Publications in international conferences with proceedings

• Shengyi Huang, Santiago Ontañón, Chris Bamford, and Lukasz Grela. Gym-µrts: Toward
affordable full game real-time strategy games research with deep reinforcement learning. In
2021 IEEE Conference on Games (CoG), pages 1–8. IEEE, 2021

• Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. In ICLR Blog Track,
2022. URL https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

• Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy
gradient algorithms. volume 35, May 2022. doi: 10.32473/flairs.v35i.130584. URL https:

//journals.flvc.org/FLAIRS/article/view/130584

• (Not presented in this thesis) Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makovi-
ichuk, Viktor Makoviychuk, Zichen Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu,
and Shuicheng YAN. Envpool: A highly parallel reinforcement learning environment execution
engine. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022. URL https://openreview.net/forum?id=BubxnHpuMbG

• (Not presented in this thesis) Rhys Compton, Ilya Valmianski, Li Deng, Costa Huang,
Namit Katariya, Xavier Amatriain, and Anitha Kannan. Medcod: A medically-accurate, emo-
tive, diverse, and controllable dialog system. In Machine Learning for Health, pages 110–129.
PMLR, 2021

Workshop presentations in international conferences or preprints

• Shengyi Huang and Santiago Ontañón. Comparing observation and action representations for
deep reinforcement learning in µrts. AIIDE Workshop on Artificial Intelligence for Strategy
Games, 2019

• (Not presented in this thesis) Chris Bamford, Shengyi Huang, and Simon Lucas. Griddly:
A platform for ai research in games, 2020

• Shengyi Huang and Santiago Ontañón. Action guidance: Getting the best of sparse rewards
and shaped rewards for real-time strategy games. AIIDE Workshop on Artificial Intelligence
for Strategy Games, abs/2010.03956, 2020. URL https://arxiv.org/abs/2010.03956

• (Not presented in this thesis) Shengyi Huang, Anssi Kanervisto, Antonin Raffin, Weixun
Wang, Santiago Ontañón, and Rousslan Fernand Julien Dossa. A2c is a special case of ppo,
2022

Chapter 1: Introduction 1.5 Contributions

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://journals.flvc.org/FLAIRS/article/view/130584
https://journals.flvc.org/FLAIRS/article/view/130584
https://openreview.net/forum?id=BubxnHpuMbG
https://arxiv.org/abs/2010.03956

6

• (Not presented in this thesis) Chris Bamford, Shengyi Huang, and Simon Lucas. Griddly:
A platform for ai research in games, 2020

• (Not presented in this thesis) Shengyi Huang and Santiago Ontañón. Measuring gener-
alization of deep reinforcement learning with real-time strategy games. AAAI Reinforcement
Learning in Games Workshop, 2021

Publications in international journals

• (Not presented in this thesis) Rousslan Fernand Julien Dossa, Shengyi Huang, Santiago
Ontañón, and Takashi Matsubara. An empirical investigation of early stopping optimizations
in proximal policy optimization. IEEE Access, 9:117981–117992, 2021

• Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html

Chapter 1: Introduction 1.5 Contributions

http://jmlr.org/papers/v23/21-1342.html

7

Chapter 2: Background

This chapter goes over the background of the field. In section 2.1, we will first set up the RL
problem more formally in the context of the Markov Decision Process and list out the notations and
important concepts. Then, in section 2.2 we will discuss the objective of RL, which is usually to
maximize the rewards the agent can get. In section 2.3, we list some popular RL research testbeds
such as arcade games and robotics control suites.

Next, we will discuss and review popular RL algorithms, which are often classified into value-
based and policy-based algorithms. We cover the value-based algorithms in section 2.4 and the
policy-based algorithms in 2.5. In both of these sections, we discuss their basic concepts and
discuss their recent extensions powered by the emergence of neural networks and deep learning.

2.1 Markov Decision Processes

Let us consider the RL problem in a Markov Decision Process (MDP) 45 which can help us model
the sequential decision problem in which the agent continuously interacts with the environments.
The agent and the environment interact with each other using discrete time steps t = 0, 1, 2, 3, ..., T .
In this thesis, we will mainly consider the popular episodic MDP setting that is popular among
DRL researchers11;16. Let us use PrPrPr{xt = x} to denote the probability of the random variable xt

taking on the value x. Such MDP setting is usually formulated as a tuple (S,A, R, P, ρ0, γ, T) of
the following components:

• S is the state space.

• A is the action space.

• R : S ×A → R is the reward function.

• P (s′, r | s, a) : S × R × A × S → [0, 1] is the dynamics of the MDP, which specifies the
probability of the environment entering s′ and obtaining r if the environment was in s executing
a. R .

= {R(s, a) | ∀s ∈ S,∀a ∈ A} ⊆ R is the set of possible rewards.

• ρ0 : S → [0, 1] is the initial state distribution.

• γ ∈ (0, 1) is the discount factor.

• T ∈ Z is the maximum episode length.

Under this setting, the agent-environment interactions naturally break into episodes. The episode
starts at some initial state s0 ∈ S. We use the notation s0 ∼ ρ0 to denote s0 is sampled from the
distribution ρ0. Then, at each time step t the agent takes an action at ∈ A according to its policy
π : S×A → [0, 1] which assigns a probability to each possible action given a state. The environment
returns a state st+1 ∈ S and a reward of the action rt according to the MDP dynamics, defined as:

P (s′, r | s, a) .
= PrPrPr {st = s′, rt−1 = r | st−1 = s, at−1 = a} (2.1)

Eventually, the agent enters into a terminate state sT . The agent-environment interactions yield a
trajectory:

τ = s0, a0, r0, s1, a1, r1, s2, a2, ..., sT−1, aT−1, rT−1, sT (2.2)

We can measure the agent’s performance by looking at the return of a trajectory at time step 0
G0. A return Gt is the sum of future rewards starting at t:

Gt
.
= rt + rt+1 + rt+2 + · · ·+ rT−1, (2.3)

8

Sometimes rewards at different time steps could have different importance — we usually consider
intermediate rewards to be more valuable. For example, a $100 bill today is more important to us
than a $100 bill in 3 years because we could save the money in the bank to earn interest. One related
concept is discounting. We introduce a discounting factor 0 ≤ γ ≤ 1 and look at the discounted
return:

Gt
.
= rt + γrt+1 + γ2rt+2 + · · ·+ γT−1rT−1 =

T−1∑
t′=t

γt′−trt′ , (2.4)

The discounting factor could help the agent focus more on intermediate rewards instead of future
rewards, which will be discounted exponentially when γ < 1. Since the return is a special case of
discounted return when γ = 1, we will use Gt to denote discounted return unless otherwise specified.

Remark 2.1 (Discrepant Notations). The literature of RL sometimes uses discrepant sets of no-
tations and can be confusing. One of the most common discrepancies is the notation of reward
steps. Consider this question — if we have an initial observation s0 and execute an action a0 to
obtain state s1, should the reward be r0 or r1? In literature, we see both approaches. Schulman
et al. 46 uses r0 while Sutton and Barto 2 ; Machado et al. 47 uses r1. Other discrepancies include
capitalization (e.g., P or p for the state transition probability function), setting (e.g., discounted
MDP vs regular MDP), and others. In this thesis, we use the notations from Schulman 48 .

Remark 2.2 (Markov Property). One important aspect of the MDP is the Markov property, which
suggests that given a sequence of state random variables {s0, s1, ..., sn}, PrPrPr(sn+1|sn, sn−1, ..., s0) =
PrPrPr(sn+1|sn). This property essentially says “the future is independent of the past and given the
present.” While many real-world problems do not satisfy the Markov property, we can often
approximate the Markov property by somehow encoding information in past states. For example,
Mnih et al. 11 stacks four past frames of the Atari games as the observation so that the observation
contains some past information for the agent to infer a velocity and the direction of objects.

2.2 The Learning Problem

In the episodic MDP, the objective of RL usually is to train a policy that maximizes the expected

discounted return. In a slight abuse of notation, let us use G(τ)
.
= G0 =

[∑T−1
t=0 γtrt

]
to denote

the discounted return of a trajectory τ . Here we express the expected discounted return following a
policy π:

J(π) = Eτ [G(τ)] (2.5)

where τ is the trajectory (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT)

and s0 ∼ ρ0, st ∼ P (·|st−1, at−1), at ∼ πθ(·|st), rt = r (st, at)

Here, the expectation notation means Ex[f(x)]
.
=
∫
dxPrPrPr(x)f(x) — the subscript is the random

variable we are calculating the expectation over. To expand the expectation in Equation 5.1, we
have

Eτ [G(τ)] =

∫
dxPrPrPr(τ)G(τ) (2.6)

where PrPrPr(τ) can be calculated as follows:

PrPrPr(τ) = PrPrPr(s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT)

= ρ0(s0)π(a0 | s0)P (s1, r0 | s0, a0)π(a1 | s1)P (s1 | s0, a0) . . .
π(aT−1 | sT−1)P (sT , rT−1 | aT−1, sT−1)

= ρ0(s0)

T−1∏
t=0

π (at | st)P (st+1, rt | st, at) (2.7)

Chapter 2: Background 2.2 The Learning Problem

9

Value-based
Algorithms

Off-policy
Algorithms

DQN
Double DQN
C51
Rainbow

DDPG
TD3
SAC

Policy-based
Algorithms Actor-critic

Algorithms

REINFORCE
A3C
A2C
TRPO
PPO

Figure 2.1: The taxonomy of popular DRL algorithms.

Let us denote Π the space of policies; the RL learning problem aims to find the optimal policy:

π∗ = argmax
π∈Π

J(π) (2.8)

Namely, the policy π∗ would obtain the best return in the expectation, which is dependent on π∗.
There are two primary ways to train the policy. First, we could learn a value function of the

optimal policy that accurately determines how good the state the agent is in. Then the policy π
could be trivial, always choosing an action that goes into a state of higher values. Second, we could
learn a policy π directly to choose actions. The former approach is called value-based methods and
the latter policy-based methods. The approaches that leverage both a policy and value function are
called actor-critic methods. Furthermore, the policy used to generate rollout data is known as the
behavior policy, and the policy RL algorithms aim to improve is called the target policy. The learning
approaches that leverage the same behavior policy and target policy are known as on-policy methods,
and the ones that use different behavior and target policies are called off-policy methods. Figure 2.1
shows the taxonomy of popular DRL algorithms.

2.3 Common RL Environments

A considerable amount of research progress in DRL has focused on testing and developing new DRL
algorithms in games. Unlike real-world problems, games are computationally cheap to simulate and
act as great testbeds to observe the learned behaviors of the agents. The two most common kinds of
testbeds / environments / games are as follows. We also call them benchmark environments because
we usually benchmark DRL algorithms on these environments to study the relative strengths and
weaknesses of algorithms.

Arcade Learning Environment (ALE). The Arcade Learning Environment (ALE)12 has
been one of the most popular simulation environments for researchers to study DRL. ALE provides
an easy-to-use interface to hundreds of Atari 2600 game environments, including Breakout, Space
invader, Beam Rider, Seaquest, and others. For example, Figure 2.2 (left) shows the game Breakout
in ALE. In Breakout, the agent observes the game’s screen in pixels and controls the pedal to bounce
a red ball into the bricks at the top. Every time the ball hits a brick, the agent receives a +1 reward.
The sum of the rewards in an episode corresponds to the game scores in the top left corner. If the
agent fails to bounce the falling ball up, the agent loses a life; when the agent exhausts five lives,
the game ends.

MuJoCo Robotics Environment. MuJoCo is a physics engine designed to help study model-
based control49. In recent years, MuJoCo has also become a popular testbed for studying robotics
control with RL15. The MuJoCo Robotics Environment16 is a series of robotics environments
implemented and OpenAI Gym50. Schulman et al. 16 introduce seven robotics environments, which
are HalfCheetah, Hopper, InvertedDoublePendulum, InvertedPendulum, Reacher, Swimmer, and
Walker2d. For example, Figure 2.2 (right) shows the game HalfCheetah environment; the RL agent
observes the positional values of the joints, followed by velocity values, and controls the joints of

Chapter 2: Background 2.3 Common RL Environments

10

Figure 2.2: A screenshot of the game Breakout in the Arcade Learning Environment12 (left
figure) and a screenshot of the task HalfCheetah-v2 in the MuJoCo Robotics Environment16;49.

the HalfCheetah to move. The agent gets rewards for not falling over and moving forward as far as
possible.

These benchmark environments are usually available through a uniform software interface called
“gym”50.

2.4 Value-based Methods

One useful concept in optimizing for the best expected discounted return is the value functions,
which would give a scalar estimate of a state, where the higher the scalar value, the better the state
is. Here are five common value functions:

1. Value Function, which gives the expected return following π starting from state s:

Vπ(s)
.
= Eτ [Gt | st = s] = Eτ

[
T−1∑
t′=t

γt′−trt′ | st = s

]
, for all s ∈ S (2.9)

2. State-action Value Function, also known as the Q-function, which gives the expected
return following π starting from state s and executing action a:

Qπ(s, a)
.
= Eτ [Gt | st = s, at = a] = Eτ

[
T−1∑
t′=t

γt′−trt′ | st = s, at = a

]
(2.10)

3. Optimal Value Function, which gives the expected return following an optimal policy π∗
starting from state s:

V∗(s)
.
= max

π∈Π
Vπ(s) (2.11)

4. Optimal State-action Value Function, which gives the expected return following an opti-

Chapter 2: Background 2.4 Value-based Methods

11

mal policy π∗ starting from state s and executing action a:

Q∗(s, a)
.
= max

π∈Π
Qπ(s, a) (2.12)

5. Advantage Function, which gives the “advantage” of taking action a instead of following
policy π 51:

Aadv
π (s, a)

.
= Qπ (s, a)− Vπ (s) (2.13)

Many popular RL10 and DRL11 algorithms leverage the recursive nature of the Q-function:

Qπ(s, a) = Eτ

[
T−1∑
t′=t

γt′−trt′ | st = s, at = a

]
(2.14)

= Eτ [rt + γQπ(st+1, at+1)] (2.15)

This recurrence equation is usually referred to as the Bellman equation 52, and we can construct
a loss to minimize the difference between the left and right terms of the equation11 to learn the
Q-values of the states.

2.4.1 Deep Value-based Methods

Empowered by the wave of deep learning approaches, Mnih et al. 11 introduced Deep Q-learning
(DQN), a DRL algorithm that empowers computer agents to learn how to play 56 Atari games
in the ALE from scratch. On a high level, DQN is a significant milestone in the field because it
makes RL work with visual inputs, and the agents learn to play most games to a reasonable degree.
In comparison, most previous methods only deal with low-level representations of the game states.
Additionally, DQN has served as a foundational baseline that researchers continue to extend to
improve sample efficiency. These extended algorithms are known as the algorithms in the DQN
family: Double DQN53, Prioritized DQN54, Distributional DQN55, Rainbow23.

To compare across different algorithms and Atari games, researchers use the median human-
normalized score (HNS) as a common metric. The HNS in a particular Atari game X is calculated
as follows:

HNSX =
Agent’s Episodic Return in X − Random Play’s Episodic Return in X

Professional Game Tester’s Episodic Return in X − Random Play’s Episodic Return in X
(2.16)

100% HNS at game X is usually referred to as “human-level performance”11, which means the
agent can play as well as a human in X, and more than 100% HNS is known as “super-human
performance”56. Then, the median HNS of 57 Atari games usually serves as a good measure of
performance when compared to humans.

Remark 2.3 (Evaluation Metric). The average HNS is often not a preferable metric. This is be-
cause in some games the agent tends to far exceed the humans (e.g., 2539% HNS in Video Pinball)
whereas in other games the agent learns nothing (e.g., 0% HNS in Montezuma’s Revenge)11.

A comparison of these algorithms can be found in Figure 2.3, which showcases the median human-
normalized score (HNS) over 200 million frames of training. Figure 2.3 is also known as a learning
curve, where the agent obtains incrementally larger median HNS as they get more training.

Deep Q-learning

As an extension of the Q-learning10, DQN’s main technical contribution is the replay buffer and
target network, both of which improve the algorithm’s stability. Replay buffer works by keeping
track of historical transitions (i.e., st, at, rt, st+1), and the agents only train on samples of the replay
buffer. Because the replay buffer tracks many historical transitions, it improves stability by ensuring
the agents do not catastrophically forget how to play the game in the beginning. Another benefit of

Chapter 2: Background 2.4 Value-based Methods

12

Figure 2.3: Median human-normalized performance across 57 Atari games of various
learning methods, reproduced from the deepmind/dqn zoo GitHub repository under the Apache2
License.

the replay buffer is a better utilization of the existing data, which further improves sample efficiency
by doing more gradient updates. Furthermore, the target network intuitively makes sure the Q-target
in the loss does not change drastically so that the loss would explode.

The rough idea of DQN is to approximate the optimal state-action value function Q∗ by mini-
mizing the mean square error between the Q-value at time step t and the next Q-value at time step
t + 1. Algorithm 1 shows a pseudocode for DQN. DQN stacks observations to help the agent infer
the velocity and the direction of moving objects; let us use xt to denote the raw observation, and
we will stack multiple xt as st to denote the stacked observations, which will be processed by some
function φ

Double Deep Q-learning

One issue with DQN is that sometimes it learns unrealistically high action values. DQN has a max-
imization step over the estimated action values during training, which tends to overestimate instead
of underestimating values53. To help mitigate this issue, van Hasselt et al. 53 propose Double DQN
(DDQN). The main idea is in the Q-target (line 13 of Algorithm 1) yj = rj + γmaxa′ Qϕ−(φj+1, a

′)
the same Q-network is used for both the selection and evaluation of the action, so the authors suggest
replacing the Q-target with

yj = rj + γQϕ−(φj+1, argmax
a′

Qϕ(φj+1, a
′)),

so that the action selection and uses the Q-network with weight ϕ, and the action evaluation uses the
secondary Q-network with weights ϕ−. van Hasselt et al. 53 empirically show that DDQN improves
over DQN in value accuracy and agent’s policy, achieving better sample efficiency.

Prioritized Experience Replay

Another improvement on DQN is the use of prioritized experience replay (PER)54, which helps
to sample and learn from more surprising experiences to the agent. DQN samples the experience
uniformly as indicated by line 11 of Algorithm 1, which may be inefficient because some experience
sampled might be redundant and unhelpful.

line 11: Sample random minibatch of transitions (φj , aj , rj , φj+1) from D

Chapter 2: Background 2.4 Value-based Methods

13

Algorithm 1 Deep Q-learning with Experience Replay

1: Initialize replay memory D to capacity N
2: Initialize action-value function Qϕ with random weights ϕ
3: Initialize target action-value function Qϕ− with random weights ϕ−

4: for episode = 1,M do
5: Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1)
6: for t = 1, T do
7: With probability ϵ select a random action at
8: otherwise select at = maxa Qϕ(φ(st), a)
9: Execute action at in emulator and observe reward rt and image xt+1

10: Set st+1 = st, at, xt+1 and preprocess ϕt+1 = φ(st+1)
11: Store transition (φt, at, rt, φt+1) in D
12: Sample random minibatch of transitions (φj , aj , rj , φj+1) from D
13: Set yj =

{
rj for terminal φj+1

rj + γmaxa′ Qϕ−(φj+1, a
′) for non-terminal φj+1

14: Minimize (yj −Qϕ(φj , aj ; θ))
2
via gradient descent

15: Every C steps reset Qϕ− = Qϕ

Schaul et al. 54 propose PER to sample the experiences that have caused high TD-errors with priority
to mitigate the issue. Focusing on these surprising experiences is shown to help the agents to learn
more efficiently using existing data with DQN and Double DQN.

Distributional / Categorical DQN (C51)

Instead of predicting a scalar value for each action like in DQN, Bellemare et al. 55 propose predicting
each action’s value distributions. The authors approximate the value distribution via a discrete
distribution whose support is a set of, by default, 51 atoms (hence the name C51). These 51 atoms
are evenly spaced numbers over a defined interval from VMIN ∈ R to VMAX ∈ R. The idea is to have
the agent output the probability mass function of the discrete distribution and use a distributional
bellman operator to construct a Q-target for the training. C51 better utilizes the data by predicting
value distributions, achieving higher sample efficiency than DQN, DDQN, DDQN with PER, and
Dueling DQN with PER57.

Rainbow

Rainbow23 is an algorithm that combines all the extensions of DQN presented above and two other
extensions: Dueling DQN57 and Noisy Net58. Because the extensions solve different problems, they
are largely complementary to each other. Because of this, Rainbow can combine the benefits of all
these extensions and produce state-of-the-art sample efficiency in the ALE.

2.5 Policy-based Methods

Alternatively, we could also parameterize a policy directly. Let us use πθ to denote the policy π is
parameterized by some vector θ. We can then obtain the policy gradient of the expected discounted
return w.r.t. the policy parameter θ:

∇θJ(πθ) = ∇θEτ [G(τ)] = ∇θEτ

[
T−1∑
t=0

γtrt

]
(2.17)

Chapter 2: Background 2.5 Policy-based Methods

14

Doing gradient ascent θ = θ + ∇θJ(πθ) therefore maximizes the expected discounted reward. We
can derive ∇θJ(πθ) as follows

48:

∇θJ(πθ) = Eτ [G(τ)]

= ∇θ

∫
dxPrPrPr(τ)G(τ)

=

∫
dx∇θPrPrPr(τ)G(τ)

=

∫
dx∇θPrPrPr(τ)

PrPrPr(τ)

PrPrPr(τ)
G(τ)

=

∫
dxPrPrPr(τ)

∇θPrPrPr(τ)

PrPrPr(τ)
G(τ)

=

∫
dxPrPrPr(τ)∇θ logPrPrPr(τ)G(τ) because

∂

∂x
log f(x) =

f ′(x)

f(x)

= Eτ [∇θ logPrPrPr(τ)G(τ)] (2.18)

We can calculate ∇θ logPrPrPr(τ) as follows:

logPrPrPr(τ) = log

(
ρ0(s0)

T−1∏
t=0

πθ (at | st)P (st+1, rt | st, at)
)

Equation 2.7

= log ρ0(s0) +

T−1∑
t=0

log (πθ (at | st) + logP (st+1, rt | st, at))

∇θ logPrPrPr(τ) =((((((∇θ log ρ0(s0) +

T−1∑
t=0

(
∇θ log πθ (at | st) +

(((((((((((
∇θ logP (st+1, rt | st, at)

)
=

T−1∑
t=0

∇θ log πθ (at | st) (2.19)

This means the policy gradient can be written as follows:

∇θJ(πθ) = ∇θEτ [G(τ)] = Eτ [∇θ logPrPrPr(τ)G(τ)] = Eτ

[
T−1∑
t=0

∇θ log πθ (at | st)G(τ)

]
(2.20)

It is perhaps surprising that the policy gradient does not depend on the distribution of the system
dynamics p. Instead, it only depends on the probability of taking action at given the state st and
the sample return. The intuition of the derived policy gradient is to scale the likelihood of taking an
action proportionate to the return of the trajectory (e.g., the higher the return of the trajectory, the
more likely the action will be taken after applying the gradient update).

We can further derive a version of the policy gradient to reduce variance48. Let us apply the
previous policy gradient on a step of reward rt:

∇θEτ [rt] = Eτ

[
t∑

t′=0

∇θ log πθ (at′ | st′) γtrt

]

Chapter 2: Background 2.5 Policy-based Methods

15

Then we can sum all the steps of rt to recover the policy gradient:

∇θEτ [G(τ)] = Eτ

[
T−1∑
t=0

γtrt

t∑
t′=0

∇θ log πθ (at′ | st′)
]

(2.21)

=

[
T−1∑
t=0

∇θ log πθ (at | st) γt
T−1∑
t′=t

γt′−trt′

]
(2.22)

=

[
T−1∑
t=0

∇θ log πθ (at | st) γtGt

]
(2.23)

The derivation from the first line to the second line is not obvious but becomes clearer when con-
sidering an example. Let us assume τ = s0, a0, r0, s1, a1, r1, s2, a2, r2, s3. Then we have:

∇θEτ [G(τ)] = r0∇θ log πθ (a0 | s0) (Equation 2.21)

+ γr1(∇θ log πθ (a0 | s0) +∇θ log πθ (a1 | s1))
+ γ2r2(∇θ log πθ (a0 | s0) +∇θ log πθ (a1 | s1) +∇θ log πθ (a2 | s2))
= r0∇θ log πθ (a0 | s0)
+ γr1∇θ log πθ (a0 | s0) + γr1∇θ log πθ (a1 | s1)
+ γ2r2∇θ log πθ (a0 | s0) + γ2r2∇θ log πθ (a1 | s1) + γ2r2∇θ log πθ (a2 | s2)
= ∇θ log πθ (a0 | s0) (r0 + γr1 + γ2r2) (Equation 2.23)

+∇θ log πθ (a1 | s1) γ(r1 + γr2)

+∇θ log πθ (a2 | s2) γ2(r2)

Notably, the policy gradient we just derived scales the likelihood of taking an action at pro-
portionate to the discounted return at gathered from the state st. There is a subtle difference:
Equation 2.20 scales log πθ (at | st) by the outcome of the entire trajectory, whereas Equation 2.23
scales log πθ (at | st) by the outcome of at. Intuitively, Equation 2.23 is better because we should
let the agent understand the consequence Gt of its actions at and do not let the past consequence
r0 + r1 + · · ·+ rt−1 impacts the agent’s learning59.

Remark 2.4 (Is policy gradient a gradient?). In practice, almost all the DRL algorithms, such as
A3C15, PPO16, ACKTR60, use the following gradient without the γt likely for implementation
simplicity:

∇?J(πθ)

[
T−1∑
t=0

∇θ log πθ (at | st)��γt
T−1∑
k=0

γkrt+k

]
(2.24)

The gradient above is only a policy gradient when γ = 1 and is not a valid policy gradient for
γ < 161;62. As a result, almost all deep policy gradient algorithms use the wrong gradient to
optimize for the discounted objective. Interestingly, Zhang et al. 62 finds no sufficient evidence
that the correct policy gradient always leads to better empirical performance. In this thesis,
we point out this important issue, but we shall assume ∇?J(πθ) is a good enough empirical
approximation and denote ∇?J(πθ) as ∇θJ(πθ) from here on.

We can leverage the ∇θJ(πθ) in Equation 2.24 to design a practical algorithm. Algorithm 2
shows the pseudocode of a variant of REINFORCE63, a popular on-policy gradient algorithm. The
general idea of the algorithm is to collect some trajectories based on the current policy and then
update the policy according to Equation 2.24.

However, Algorithm 2 may be of high variance because the value of Gt could vary significantly
depending on the reward’s scale2 (p. 329). To reduce the variance, a popular idea is to increase
the likelihood of an action if it results in a better-than-expected return. We would use the advantage

Chapter 2: Background 2.5 Policy-based Methods

16

Algorithm 2 A Variant of REINFORCE

1: Initialize a policy πθ

2: Initialize a learning rate α
3: for iteration = 0,1,2,..., I do
4: Collect a set of trajectories D = {τi} following πθ

5: Calculate the returns Gi
t =

∑T−1
t′=t γ

t′−trit′ for each τi
6: Update the policy: θ = θ + α 1

|Dk|(T−1)

∑
τi∈D

∑T−1
t=0 ∇θ log πθ(s

i
t, a

i
t)G

i
t

7: # Gi
t, s

i
t, a

i
t, and rit are the return, state, action, and reward at time step t and trajectory τi

Algorithm 3 A Variant of REINFORCE with advantage

1: Initialize a policy πθ

2: Initialize a value Vϕ

3: Initialize a learning rate α
4: for iteration = 0,1,2,..., I do
5: Collect a set of trajectories D = {τi} following πθ

6: Calculate the returns Gi
t =

∑T−1
t′=t γ

t′−trit′ for each τi

7: Update the policy: θ = θ + α 1
|Dk|(T−1)

∑
τi∈D

∑(T−1)
t=0 ∇θ log πθ(s

i
t, a

i
t)(G

i
t − Vϕ(S

i
t))

8: Update the value: ϕ = ϕ+ α 1
|Dk|(T−1)

∑
τi∈D

∑(T−1)
t=0 (Gi

t − Vϕ(s
i
t))∇ϕVϕ(s

i
t)

9: # Gi
t, s

i
t, a

i
t, and rit are the return, state, action, and reward at time step t and trajectory τi

function Aadv
π in place of Gt, and the advantage function can be approximated via Gt − Vπ(St),

which results in the following gradient

∇θJ(πθ) = Eτ [∇θ log πθ(st, at)(Gt − Vπ(st))]

The value function Vπ can be parameterized by ϕ ∈ Rd (denoted as Vϕ) and can be fitted with an
MSE loss against the empirical returns. Algorithm 3 demonstrates the resulting algorithm.

2.5.1 Deep Actor-critic Methods

While the Deep Q-learning family obtains popularity, researchers also extend policy gradient meth-
ods to incorporate neural networks. The first such work is the Asynchronous Advantage Actor-Critic
(A3C)15, which continues to work on the ALE and extends to robotics environments with contin-
uous action spaces using the MuJoCo simulator. Following that, researchers continue to improve
sample efficiency with newer policy gradient methods such as Trust Region Policy Optimization
(TRPO)19, Proximal Policy Optimization (PPO)16, Actor-Critic using Kronecker-Factored Trust
Region (ACKTR)60, Actor-Critic with Experience Replay(ACER)64.

Asynchronous Advantage Actor-Critic.

Asynchronous Advantage Actor-Critic (A3C)15 is basically Algorithm 3 but does rollouts and train-
ing asynchronously in separate workers. A3C is a foundational work that has two main contributions.

1. Run faster while obtaining good performance. One of the main benefits of DQN’s expe-
rience replay is more diverse experiences during training, which help agents review skills they
have already learned. Asynchronous Advantage Actor-Critic (A3C) provides a new paradigm
to achieve the same purpose by having the agent collect experiences from multiple parallel
environments that run on separate CPUs. Because of this, A3C achieves the same level of
sample efficiency while taking significantly less wall time. As shown in the following Table,
A3C achieves good performance taking as little as one day. In contrast, the DQN family
has to take at least eight days to achieve the same level of performance (measured in mean

Chapter 2: Background 2.5 Policy-based Methods

17

and median human-normalized scores on 57 Atari games using the human starts evaluation
metric15).

2. Work with continuous action spaces. Unlike the DQN family, which only works with
discrete action spaces, A3C also works with continuous action spaces that describe robotics
control. A3C achieves this by modeling the discrete action spaces with a categorical distribu-
tion and continuous action spaces with a normal distribution.

Because of these two benefits over DQN, A3C and its synchronous variant A2C have become a
great baseline that works with various games and tasks, gradually becoming a popular choice among
researchers.

Trust Region Policy Optimization

Note that A3C only does a single policy update per rollouts collected, which can be wasteful. To
further improve sample efficiency, Schulman et al. 19 propose Trust Region Policy Optimization
(TRPO) to reuse the rollouts for multiple policy updates via importance sampling. To improve the
stability of TRPO, the authors also propose constraining the amount of policy change (i.e., ensuring
the trust region) via Kullback–Leibler divergence. TRPO shows robust performance in the MuJoCo
robotics environments and in the ALE.

Proximal Policy Optimization

The practical algorithm to solve TRPO’s constrained optimization problem involves natural gradient
descent, which could be computationally expensive and challenging to implement20. To alleviate
the complexity of TRPO, Schulman et al. 16 propose the Proximal Policy Optimization (PPO)
algorithm with a simpler objective and implementation. Since its introduction in 2017, PPO has
become arguably the most popular and essential DRL algorithm. It inherits the two main benefits
of A3C of being reasonably fast and working with different action paces and further improves the
algorithm’s stability and performance. Researchers have used it as a go-to algorithm for relatively
simple environments such as the ALE, MuJoCo robotics environment16, and Google Football65, all
the way up to complicated multiplayer games such as Dota 266 and StarCraft II67 and impactful
real-life projects such as designing floor plans for microchips68. Here is its policy objective.

JCLIP (πθ) = Eτ

[
min

(
πθ(at | st)
πθ′(at | st)

ˆAadv
π (st, at), clip

(
πθ(at | st)
πθ′(at | st)

, 1− ϵ, 1 + ϵ

)
ˆAadv
π (st, at)

)]
(2.25)

where ˆAadv
π is an advantage estimator called Generalized Advantage Estimator46. During the opti-

mization phase, the agent also learns the value function and maximizes the policy’s entropy, therefore
optimizing the following joint objective:

JJOINT (θ) = JCLIP (πθ)− c1J
V F (θ) + c2S[πθ], (2.26)

where c1, c2 are coefficients, S is an entropy bonus, and JV F is the squared error loss for the value
function associated with πθ.

Others

In addition to A3C and PPO, other notable mentions are Actor-Critic using Kronecker-Factored
Trust Region (ACKTR)60, Actor-Critic with Experience Replay(ACER)64. ACER improves the
sample efficiency and stability by utilizing the replay buffer like in DQN, whereas ACKTR explores
alternative trust-region optimization paradigms that are more scalable. Both methods show sizable
improvement over the A3C baseline. However, PPO remains the most popular policy gradient
algorithm due to its relative simplicity.

Chapter 2: Background 2.5 Policy-based Methods

18

2.5.2 Deep Off-policy Actor-critic Methods

One of the drawbacks of DQN is the lack of support for continuous action spaces. To address this
issue, Lillicrap et al. 69 modify DQN by breaking the Q-network into two separate networks, the actor
and critic network, respectively, which results in the Deep Deterministic Policy Gradient algorithm
that works with the continuous action spaces. Following this, Fujimoto et al. 70 propose improving
the algorithm’s stability and performance with some techniques borrowed from the DQN family.

Deep Deterministic Policy Gradient

The main problem with applying DQN to continuous action spaces is finding the action that maxi-
mizes the action value. The continuous action space requires iterative optimization and every step.
Alternatively, it is also viable to discretize the continuous action space, but this approach has many
drawbacks, mostly due to the dimensionality explosion. In DQN, its network takes the input of the
state and outputs the action values of all the discrete actions. In Deep Deterministic Policy Gradient
(DDPG)69, its critic’s network Q takes the input of a state-action pair and outputs the action value
of the pair. Additionally, DDPG’s actor’s network µ takes the input of the state and outputs the
action. During training, the critic’s network can still be trained like in DQN:

min (yj −Qϕ(φj , aj))
2
w.r.t ϕ, yj = rj + γQϕ(φj+1, µθ(φj+1))

where ϕ and θ are the weights of the critic’s and actor’s network, respectively. Moreover, the actor
can be trained by simply maximizing the Q-value:

maxQϕ(φj+1, µθ(φj+1)) w.r.t θ

DDPG have achieved good baseline performance in the MuJoCo environments.

Twin Delayed Deep Deterministic Policy Gradient

Twin Delayed Deep Deterministic Policy Gradient (TD3)70 is an algorithm that improves upon
DDPG. TD3 features three contributions:

1. Clipped Double Q-learning. Like DQN, DDPG suffers from over-estimation of the Q
values. To mitigate this issue, the authors adopt ideas from Double Q-learning and propose
Clipped Double Q-learning (CDQ) for training the critic’s network. CDQ can significantly
reduce over-estimation empirically. Although it is possible to underestimate Q values with
CDQ’s design, it is preferable to overestimate Q values since the errors will not be propagated
through updates.

2. Target Policy Smoothing Regularization. When calculating the Q-target, Target Pol-
icy Smoothing Regularization (TPS) adds small amounts of clipped random noise to actions
sampled from µ, which results in that similar actions should have similar values.

3. Delayed Policy Updates. Because there are two separate networks for the actor and critic,
it is beneficial to update the actor’s network only after the critic’s network has been stabilized.
To this end, TD3 delays the policy updates until the critic’s network has been updated k = 2
times.

By combining these three contributions and tuning the architecture and hyperparameters, TD3
achieves state-of-the-art sample efficiency in the MuJoCo environments.

2.6 Acknolwedgement

This chapter has referenced the notations and preliminaries sections from the papers, book, or thesiss
of Sutton and Barto 2 ; Machado et al. 47 ; Schulman 48 ; Hoffman et al. 51 ; Flet-Berliac 71 .

Chapter 2: Background 2.6 Acknolwedgement

19

Part I

Reproducibility in Deep Reinforcement Learning

20

Chapter 3: Demystifying PPO

As discussed in Section 1.4, the field of DRL suffers a major reproducibility problem partly because
the implementation details are overlooked. In this chapter, we closely examine the implementation
details of Proximal Policy Optimization (PPO), one of the most popular DRL algorithms. Despite
its widespread popularity, PPO is not a peer-reviewed publication and has undergone several ver-
sions. As a result, understanding and reproducing PPO has been a recurrent issue for years. To
address these issues, we take a deep dive into PPO’s official implementation and enumerate 37 im-
plementation details that are important to replicate PPO’s performance, yet most of these details
are not explicitly elaborated in the original PPO paper. By understanding these 37 details, we
empirically show that we can reproduce PPO’s performance with high fidelity in the ALE, MuJoCo
Robotics Environment, Procgen, and other benchmark tasks. The work of this chapter is based on
the following publication:

• Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. In ICLR Blog Track,
2022. URL https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

3.1 Authorship

Shengyi Huang created the codebase and designed experiments. Rousslan Fernand Julien Dossa
helped with the codebase. Shengyi Huang led the writing, with contributions from Rousslan Fernand
Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun Wang.

3.2 Motivation

PPO is a policy gradient algorithm proposed by Schulman et al. 16 . As a refinement to Trust
Region Policy Optimization (TRPO)19, PPO uses a simpler clipped surrogate objective, omitting the
expensive second-order optimization presented in TRPO. Despite this simpler objective, Schulman
et al. 16 show PPO has higher sample efficiency than TRPO in many control tasks. PPO also
exhibits good empirical performance in the arcade learning environment (ALE). Since then, PPO
has become one of the most popular DRL algorithms, accumulating over 8,000 citations at the
time of this writing. Its applications are diverse — examples include video games16;66, robotics
control72, Natural Language Processing (NLP)73;74, database optimizations75, and circuit and chip
designs76;77.

Despite PPO’s widespread adoption, reproducing PPO’s results can be surprisingly challenging.
The original PPO codebase is written in Tensorflow 1.x and has arguably poor organization, resulting
in hard-to-read code. As a result, researchers have often elected to homebrew their own PPO
implementation given that the PPO paper16 is relatively straightforward, or at least it seems so.
To many RL practitioners’ surprise, they found themselves struggling with the same problem: “why
does my PPO perform worse than the original PPO?” When seeking help online, these practitioners
usually find a series of mysterious words, such as “gradient clipping,” which are never mentioned in
the PPO paper.

However, there is no magic in the world: if the original PPO performs well and home-brewed
PPOs do not, there must be some differences. Indeed, recent work has identified 9 code-level
optimizations implemented in the original PPO codebase but barely mentioned in the paper20;
researchers also conducted extensive ablation studies on 50+ design choices with PPO21. Despite
their contribution, these works do not describe how all these implementation details come together

0See https://github.com/openai/baselines

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://github.com/openai/baselines

21

as a whole picture. As a result, PPO implementation remains mysterious, especially to beginners.
In this chapter, we describe our effort in demystifying PPO by explaining its implementation details
in significant depth.

3.3 Background

PPO is a policy gradient algorithm proposed by Schulman et al. 16 . As a refinement to Trust
Region Policy Optimization (TRPO)19, PPO uses a simpler clipped surrogate objective, omitting the
expensive second-order optimization presented in TRPO. Despite this simpler objective, Schulman
et al. 16 demonstrates that PPO has higher sample efficiency than TRPO in many control tasks.
PPO also has good empirical performance in the arcade learning environment (ALE) which contain
Atari games.

To facilitate more transparent research, Schulman et al. 16 have made the source code of PPO
available in the openai/baselines GitHub repository with the code name pposgd (commit da99706
on 7/20/2017). Later, the openai/baselines maintainers have introduced a series of revisions. The
key events include:

1. 11/16/2017, commit 2dd7d30: the maintainers introduced a refactored version ppo2 and re-
named pposgd to ppo1. According to a GitHub issue, one maintainer suggests ppo2 should
offer better GPU utilization by batching observations from multiple simulation environments.

2. 8/10/2018, commit ea68f3b: after a few revisions, the maintainers evaluated ppo2, producing
the MuJoCo benchmark

3. 10/4/2018, commit 7bfbcf1: after a few revisions, the maintainers evaluated ppo2, producing
the Atari benchmark

4. 1/31/2020, commit ea25b9e: the maintainers have merged the last commit to openai/baselines
to date. To our knowledge, ppo2 (ea25b9e) is the base of many PPO-related resources:

(a) RL libraries such Stable-Baselines3 (SB3), pytorch-a2c-ppo-acktr-gail, and CleanRL have
built their PPO implementation to match implementation details in ppo2 (ea25b9e)
closely.

(b) Recent papers20;21 have examined implementation details concerning robotics tasks in
ppo2 (ea25b9e).

In recent years, reproducing PPO’s results has become a challenging issue. Table 3.2 collects the
best-reported performance of PPO in popular RL libraries in Atari and MuJoCo environments.

We offer several observations.

1. These revisions in openai/baselines are not without performance consequences. Reproducing
PPO’s results is challenging partly because even the original implementation could produce
inconsistent results.

2. ppo2 (ea25b9e) and libraries matching its implementation details have reported rather similar
results. In comparison, other libraries have usually reported more diverse results.

3. Interestingly, we have found many libraries reported performance in MuJoCo tasks but not in
Atari tasks.

Despite the complicated situation, we have found ppo2 (ea25b9e) as an implementation worth
studying. It obtains good performance in both Atari and MuJoCo tasks. More importantly, it
also incorporates advanced features such as LSTM and treatment of the MultiDiscrete action
space, unlocking application to more complicated games such as Real-time Strategy games. As
such, we define ppo2 (ea25b9e) as the official PPO implementation and base the remainder of
this document on this implementation.

Chapter 3: Demystifying PPO 3.3 Background

https://github.com/openai/baselines/tree/da997060461e3cbf54ca4dc7a67081a731fb6b3b/baselines/pposgd
https://github.com/openai/baselines/tree/2dd7d307d7d163a02b37c87c62b7949af02d99ad/baselines/ppo2
https://github.com/openai/baselines/issues/485#issuecomment-413722708
https://github.com/openai/baselines/commits/ea68f3b7e6a20d4c6bf1e32f8fb5ce18e6ef3a89
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/benchmarks_mujoco1M.htm
https://github.com/openai/baselines/commit/7bfbcf177eca8f46c0c0bfbb378e044539f5e061
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/benchmarks_mujoco1M.htm
https://github.com/openai/baselines/commit/ea25b9e8b234e6ee1bca43083f8f3cf974143998
https://github.com/openai/baselines/commit/ea25b9e8b234e6ee1bca43083f8f3cf974143998
https://github.com/DLR-RM/stable-baselines3
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/vwxyzjn/cleanrl
https://github.com/openai/baselines/commit/ea25b9e8b234e6ee1bca43083f8f3cf974143998
https://github.com/openai/baselines/commit/ea25b9e8b234e6ee1bca43083f8f3cf974143998
https://github.com/openai/baselines/commit/ea25b9e8b234e6ee1bca43083f8f3cf974143998
https://github.com/openai/baselines/commit/ea25b9e8b234e6ee1bca43083f8f3cf974143998
https://github.com/openai/baselines/commit/ea25b9e8b234e6ee1bca43083f8f3cf974143998

22

T
a
b
le

3
.2
:
T
h
e
b
es
t-
re
p
or
te
d
p
er
fo
rm

a
n
ce

o
f
P
P
O

in
p
o
p
u
la
r
R
L
li
b
ra
ri
es

in
A
ta
ri

a
n
d
M
u
J
o
C
o
en
v
ir
o
n
m
en
ts
.

R
L
L
ib
ra
ry

B
en
ch
m
ar
k
S
o
u
rc
e

B
re
a
ko
u
t

P
o
n
g

B
ea
m
R
id
er

H
o
p
p
er

W
a
lk
er
2
d

H
a
lf
C
h
ee
ta
h

B
as
el
in
es

p
p
o
s
g
d
/
p
p
o
1

(d
a9
97
06
)

p
ap

er
1
6
($
)

2
7
4
.8

2
0
.7

1
5
9
0

˜
2
2
5
0

˜
3
0
0
0

˜
1
7
5
0

B
as
el
in
es

p
p
o
2
(7
b
fb
cf
1

an
d
ea
68
f3
b
)

d
o
cs

(*
)

1
1
4
.2
6

1
3
.6
8

1
2
9
9
.2
5

2
3
1
6
.1
6

3
4
2
4
.9
5

1
6
6
8
.5
8

B
as
el
in
es

p
p
o
2
(e
a2
5b

9e
)

th
is

w
or
k
(*
)

4
0
9
.2
6
5

±
3
0
.9
8

2
0
.5
9

±
0
.4
0

2
6
2
7
.9
6

±
6
2
5
.7
5
1

2
4
4
8
.7
3

±
5
9
6
.1
3

3
1
4
2
.2
4

±
9
8
2
.2
5

2
1
4
8
.7
7

±
1
1
6
6
.0
2
3

S
ta
b
le
-B

as
el
in
es
3

d
o
cs

(0
)
(ˆ
)

3
9
8
.0
3

±
3
3
.2
8

2
0
.9
8

±
0
.1
0

3
3
9
7
.0
0

±
1
6
6
2
.3
6

2
4
1
0
.4
3

±
1
0
.0
2

3
4
7
8
.7
9

±
8
2
1
.7
0

5
8
1
9
.0
9

±
6
6
3
.5
3

C
le
an

R
L

d
o
cs

(1
)
(*
)

˜
4
0
2

˜
2
0
.3
9

˜
2
1
3
1

˜
2
6
8
5

˜
3
7
5
3

˜
1
6
8
3

R
ay
/R

L
li
b

re
p
o
(2
)
(*
)

2
0
1

-
4
4
8
0

-
-

9
6
6
4

S
p
in
n
in
gU

p
d
o
cs

(3
)
(ˆ
)

-
-

-
˜
2
5
0
0

˜
2
5
0
0

˜
3
0
0
0

C
h
ai
n
er
R
L

p
ap

er
(4
)
(*
)

-
-

-
2
7
1
9

±
6
7

2
9
9
4

±
1
1
3

2
4
0
4

±
1
8
5

T
ia
n
sh
ou

p
ap

er
(5
)
(ˆ
)

-
-

-
7
3
3
7
.4

±
1
5
0
8
.2

3
1
2
7
.7

±
4
1
3
.0

4
8
9
5
.6

±
7
0
4
.3

T
on

ic
p
ap

er
(6
)
(ˆ
)

-
-

-
˜
2
0
0
0

˜
4
5
0
0

˜
5
0
0
0

($
)
T
h
e
ex

p
er
im

en
ts

u
se
s
th

e
v
1
M
u
J
o
C
o
en

v
ir
o
n
m
en

ts
(*
)
T
h
e
ex

p
er
im

en
ts

u
se
s
th

e
v
2
M
u
J
o
C
o
en

v
ir
o
n
m
en

ts
(0
)
1
M

st
ep

s
fo
r
M
u
J
o
C
o
ex

p
er
im

en
ts
,
1
0
M

st
ep

s
fo
r
A
ta
ri

g
a
m
es
,
1
ra
n
d
o
m

se
ed

(ˆ
)
T
h
e
ex

p
er
im

en
ts

u
se
s
th

e
v
3
M
u
J
o
C
o
en

v
ir
o
n
m
en

ts
(1
)
2
M

st
ep

s
fo
r
M
u
J
o
C
o
ex

p
er
im

en
ts
,
1
0
M

st
ep

s
fo
r
A
ta
ri

g
a
m
es
,
2
ra
n
d
o
m

se
ed

s
(2
)
2
5
M

st
ep

s
a
n
d
1
0
w
o
rk
er
s
(5

en
v
s
p
er

w
o
rk
er
)
fo
r
A
ta
ri

ex
p
er
im

en
ts
;
4
4
M

st
ep

s
a
n
d
1
6
w
o
rk
er
s
fo
r
M
u
J
o
C
o
ex

p
er
im

en
ts
;
1
ra
n
d
o
m

se
ed

(3
)
3
M

st
ep

s,
P
y
T
o
rc
h
v
er
si
o
n
,
1
0
ra
n
d
o
m

se
ed

s
(4
)
2
M

st
ep

s,
1
0
ra
n
d
o
m

se
ed

s
(5
)
3
M

st
ep

s,
1
0
ra
n
d
o
m

se
ed

s
(6
)
5
M

st
ep

s,
1
0
ra
n
d
o
m

se
ed

s

Chapter 3: Demystifying PPO 3.3 Background

https://github.com/openai/baselines
https://github.com/openai/baselines/tree/da997060461e3cbf54ca4dc7a67081a731fb6b3b/baselines/pposgd
https://arxiv.org/abs/1707.06347
https://github.com/openai/baselines
https://github.com/openai/baselines/commit/7bfbcf177eca8f46c0c0bfbb378e044539f5e061
https://github.com/openai/baselines/commits/ea68f3b7e6a20d4c6bf1e32f8fb5ce18e6ef3a89
https://github.com/openai/baselines/blob/master/benchmarks_atari10M.htm
https://github.com/openai/baselines
https://github.com/openai/baselines/commit/ea25b9e8b234e6ee1bca43083f8f3cf974143998
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/rl-baselines3-zoo/blob/111d03c4ce728fff51d4b1c10355ea612bc8d456/benchmark.md
https://github.com/vwxyzjn/cleanrl
https://wandb.ai/cleanrl/cleanrl.benchmark/reports/Open-RL-Benchmark-0-6-0---Vmlldzo0MDcxOA
https://github.com/ray-project/ray/tree/master/rllib/
https://github.com/ray-project/rl-experiments/tree/9543891717cd0f8e137e23812229a06f8ed1c6c2
https://github.com/openai/spinningup
https://spinningup.openai.com/en/latest/spinningup/bench.html#id12
https://github.com/chainer/chainerrl
https://arxiv.org/pdf/1912.03905.pdf
https://github.com/thu-ml/tianshou
https://arxiv.org/pdf/2107.14171.pdf
https://github.com/fabiopardo/tonic
https://arxiv.org/pdf/2011.07537.pdf

23

3.4 38 Implementation Details

Instead of doing ablation studies and making recommendations on which details matter, this chapter
takes a step back and focuses on reproductions of PPO’s results in all accounts. Specifically, this
work complements prior work in the following ways:

1. Video Tutorials and Single-file Implementations: we make video tutorials on re-implementing
PPO in PyTorch from scratch, matching details in the official PPO implementation to handle
classic control tasks, Atari games, and MuJoCo tasks1. Notably, we adopt single-file imple-
mentations in our code base, making the code quicker and easier to read.

2. Implementation Checklist with References: During our re-implementation, we have
compiled an implementation checklist containing 37 details as follows. For each implementation
detail, we display the permanent link to its code (which is not done in academic papers) and
point out its literature connection.

• 13 core implementation details

• 9 Atari-specific implementation details

• 9 implementation details for robotics tasks (with continuous action spaces)

• 5 LSTM implementation details

• 1 MultiDiscrete action spaces implementation detail

3. High-fidelity Reproduction: To validate our re-implementation, we show that the empirical
results of our implementation match closely with those of the original, in classic control tasks,
Atari games, MuJoCo tasks, LSTM, and Real-time Strategy (RTS) game tasks.

4. Situational Implementation Details: We also cover 4 implementation details not used in
the official implementation but potentially useful on special occasions.

Our ultimate purpose is to help researchers understand the PPO implementation through and
through, reproduce past results with high fidelity, and facilitate customization for new research.
To make research reproducible, we have made source code available2 and the tracked experiments
available3

Remark 3.1 (Full Content). The bulk of the document focuses on enumerating the 37 im-
plementation details and making connections to existing literature sources. For this the-
sis, we do not include its full content and instead refer the readers to the document itself
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

1See the video tutorials at https://youtu.be/MEt6rrxH8W4, https://youtu.be/05RMTj-2K_Y, and https://youtu.

be/BvZvx7ENZBw.
2See https://github.com/vwxyzjn/ppo-implementation-details.
3See https://wandb.ai/vwxyzjn/ppo-details.

Chapter 3: Demystifying PPO 3.4 38 Implementation Details

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://youtu.be/MEt6rrxH8W4
https://youtu.be/05RMTj-2K_Y
https://youtu.be/BvZvx7ENZBw
https://youtu.be/BvZvx7ENZBw
https://github.com/vwxyzjn/ppo-implementation-details
https://wandb.ai/vwxyzjn/ppo-details

24

3.5 Discussions

During our reproduction, we found several useful debugging techniques. They are as follows:

1. Seed everything: One debugging approach is to seed everything and then observe when
things start to differ from the reference implementation. So you could use the same seed for
your implementation and mine, check if the observation returned by the environment is the
same, then check if the sample actions are the same. By following the steps, you would check
everything to make sure they are aligned (e.g. print out values.sum() see if yours match the
reference implementation). In the past, we have done this with the pytorch-a2c-ppo-acktr-gail
repository and ultimately figured out a bug with our implementation.

2. Check if ratio=1: Check if the ratio are always 1s during the first epoch and first mini-
batch update, when new and old policies are the same and therefore the ratio are 1s and
has nothing to clip. If ratio are not 1s, it means there is a bug, and the program has not
reconstructed the probability distributions used in rollouts.

3. Check Kullback-Leibler (KL) divergence: It is often useful to check if KL divergence
goes too high. We have generally found the approx kl stays below 0.02, and if approx kl

becomes too high, it usually means the policy is changing too quickly and there is a bug.

4. Check other metrics: As shown in the Results section, the other metrics, such as policy and
value losses in our implementation, also closely match those in the original implementation.
So if your policy loss curve looks very different than the reference implementation, there might
be a bug.

5. Rule of thumb: 400 episodic return in breakout: Check if your PPO could obtain 400
episodic return in breakout. We have found this to be a practical rule of thumb to determine
the fidelity of online PPO implementations in GitHub. Often we found PPO repositories
not able to do this, and we know they probably do not match all implementation details of
openai/baselines’ PPO.

If you are doing research using PPO, consider adopting the following recommendations to help
improve the reproducibility of your work:

1. Enumerate implementation details used: If you have implemented PPO as the baseline
for your experiment, you should specify which implementation details you are using. Consider
using bullet points to enumerate them like done in this work.

2. Release locked source code: Always open source your code whenever possible and make
sure the code runs. We suggest adopting proper dependency managers such as poetry or
pipenv to lock your dependencies. In the past, we have encountered numerous projects that
are based on pip install -e ., which 80% of the time would fail to run due to some obscure
errors. Having a pre-built docker image with all dependencies installed can also help in case
the dependencies packages are not hosted by package managers after deprecation.

3. Track experiments: Consider using an experiment management software to track your met-
rics, hyperparameters, code, and others. They can boost your productivity by saving hundreds
of hours spent on matplotlib and worrying about how to display data. Commercial solutions
(usually more mature) include Weights and Biases and Neptune, and open-source solutions
include Aim, ClearML, Polyaxon.

4. Adopt single-file implementation: If your research requires more tweaking, consider im-
plementing your algorithms using single-file implementations. This document does this and
creates standalone files for different environments. For example, our ppo atari.py contains
all relevant code to handle Atari games. Such a paradigm has the following benefits at the
cost of duplicate and harder-to-refactor code:

Chapter 3: Demystifying PPO 3.5 Discussions

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://python-poetry.org/
https://pipenv.pypa.io/en/latest/
https://wandb.ai/
https://neptune.ai/
https://github.com/aimhubio/aim
https://github.com/allegroai/clearml
https://github.com/polyaxon/polyaxon

25

• Easier to see the whole picture: Because each file is self-contained, people can easily spot
all relevant implementation details of the algorithm. Such a paradigm also reduces the
burden to understand how files like env.py, agent.py, network.py work together like in
typical RL libraries.

• Faster developing experience: Usually, each file like ppo.py has significantly less LOC
compared to RL libraries’ PPO. As a result, it’s often easier to prototype new features
without having to do subclassing and refactoring.

• Painless performance attribution: If a new version of our algorithm has obtained higher
performance, we know this single file is exactly responsible for the performance improve-
ment. To attribute the performance improvement, we can simply do a filediff between
the current and past versions, and every line of code change is made explicit to us.

3.5.1 Does modularity help RL libraries?

This document demonstrates reproducing PPO is a non-trivial effort, even though PPO’s source
code is readily available for reference. Why is it the case? We think one important reason might be
that modularity disperses implementation details.

Almost all RL libraries have adopted modular design, featuring different modules / files like
env.py, agent.py, network.py, utils.py, runner.py, etc. The nature of modularity necessarily
puts implementation details into different files, which is usually great from a software engineering
perspective. That is, we don’t have to know how other components work when we just work on
env.py. Being able to treat other components as black boxes has empowered us to work on large
and complicated systems for the last decades.

However, this practice might clash hard with ML / RL: as the library grows, it becomes harder
and harder to grasp all implementation details w.r.t an algorithm, whereas recognizing all implemen-
tation details has become increasingly important, as indicated by this document, Engstrom et al. 20 ,
and Andrychowicz et al. 21 . So what can we do?

Modular design still offers numerous benefits such as 1) easy-to-use interface, 2) integrated test
cases, 3) easy to plug different components and others. To this end, good RL libraries are valuable,
and we recommend them to write good documentation and refactor libraries to adopt new features.
For algorithmic researchers, however, we recommend considering single-file implementations because
they are straightforward to read and extend.

3.5.2 Is asynchronous PPO better?

Not necessarily. The high-throughput variant Asynchronous PPO (APPO)66 has obtained more
attention in recent years. APPO eliminates the idle time in the original PPO implementation (e.g.,
have to wait for all N environments to return observations), resulting in much higher throughput,
GPU and CPU utilization. However, APPO involves performance-reducing side-effects, namely stale
experiences34, and we have found insufficient evidence to ascertain its improvement. The biggest
issue is:

Underbenchmarked APPO implementation: RLlib has an APPO implementation, yet its
documentation contains no benchmark information and suggest “APPO is not always more efficient;
it is often better to use standard PPO or IMPALA.” Sample Factory78 presents more benchmark
results, but its support for Atari games is still a work in progress. To our knowledge, there is no
APPO implementation that simultaneously works with Atari games, MuJoCo or Pybullet tasks,
MultiDiscrete action spaces and with an LSTM.

While APPO is intuitively valuable for CPU-intensive tasks such as Dota 2, this document rec-
ommends an alternative approach to speed up PPO: make the vectorized environments really
fast. Initially, the vectorized environments are implemented in python, which is slow. More recently,
researchers have proposed to use accelerated vectorized environments. For example, 1. Procgen79

uses C++ to implement native vectorized environments, resulting in much higher throughput when
setting N = 64 (N is the number of environments), 1. Envpool uses C++ to offer native vectorized
environments for Atari and classic control games, 1. NVIDIA’s Isaac Gym72 uses torch to write

Chapter 3: Demystifying PPO 3.5 Discussions

https://docs.ray.io/en/latest/rllib-algorithms.html#appo
https://github.com/alex-petrenko/sample-factory/issues/51
https://github.com/sail-sg/envpool
https://developer.nvidia.com/isaac-gym

26

hardware-accelerated vectorized environments, allowing the users to spin up N = 4096 environments
easily, 1. Google’s Brax uses jax to write hardware-accelerated vectorized environments, allowing
the users to spin up N = 2048 environments easily and solve robotics tasks like Ant in minutes
compared to hours of training in MuJoCo.

In the following section, we demonstrate accelerated training with PPO + envpool in the Atari
game Pong.

3.5.3 Solving Pong in 5 minutes with PPO + Envpool

Envpool is a recent work that offers accelerated vectorized environments for Atari by leveraging C++
and thread pools. Our PPO gets a free and side-effects-free performance boost by simply adopting
it. We make ˜60 lines of code change to ppo atari.py to incorporate this 1 detail, resulting in a
self-contained ppo atari envpool.py (link) that has 365 lines of code.

As shown below, Envpool + PPO runs 3x faster without side effects (as in no loss of sample
efficiency):

Figure 3.1: Benchmark of PPO + Envpol in Atari tasks.

Two quick notes: 1) the performance deterioration in BeamRider is largely due to a degenerate
random seed, and 2) Envpool uses the v5 ALE environments but has processed them the same

Chapter 3: Demystifying PPO 3.5 Discussions

https://github.com/google/brax
https://github.com/sail-sg/envpool
https://www.diffchecker.com/RafLuYD6
https://github.com/vwxyzjn/ppo-implementation-details/blob/main/ppo_atari_envpool.py

27

way as the v4 ALE environments used in our previous experiments. Furthermore, by tuning the
hyperparameters, we obtained a run that solves Pong in 5 mins. This performance is even comparable
to IMPALA’s34 results:

Figure 3.2: The performance of various high-throughput RL libraries in Pong. The top left
figure is our tuned experiment that learns Pong in 5 minutes (24 CPU and a RTX 2060). The
top right figure is the tuned experiment in PARL thatlearns Pong in 10 minutes (one learner
(in a P40 GPU) and 32 actors (in 32 CPUs)). The bottom left figure is the tuned experiment
from RLLib that learns Pong in 3 minutes (32, 64, 128 CPUs and presumably a GPU). The
top right figure is the tuned experiment in SeedRL25 that learns Pong in about 45 minutes (8
TPUv3 cores, 213 CPU cores).

We think this raises a practical consideration: adopting async RL such as IMPALA could be
more difficult than just making your vectorized environments fast.

3.5.4 Request for Research

Given this document, we believe the community understands PPO better and would be in a much
better place to make improvements. Here are a few suggested areas for research.

1. Alternative choices: As we have walked through the different details of PPO, it seems that
some of them result from arbitrary choices. It would be interesting to investigate alternative
choices and see how such change affects results. You can find below a non-exhaustive list of
tracks to explore:

Chapter 3: Demystifying PPO 3.5 Discussions

https://github.com/vwxyzjn/ppo-implementation-details#atari-with-envpool
https://github.com/PaddlePaddle/PARL/tree/042cc25ee611fb70ea3804a6c7ed584165e406ec/benchmark/fluid/IMPALA
https://github.com/ray-project/rl-experiments/tree/9543891717cd0f8e137e23812229a06f8ed1c6c2#pong-in-3-minutes

28

• use of a different Atari pre-processing (as partially explored by Machado et al., 2018))

• use of a different distribution for continuous actions (Beta distribution, squashed Gaus-
sian, Gaussian with full covariance, . . .), it will most probably require some tuning

• use of a state-dependent standard deviation when using continuous actions (with or with-
out backpropagation of the gradient to the whole actor network)

• use of a different initialization for LSTM (ones instead of zeros, random noise, learnable
parameter, . . .), use of GRU cells instead of LSTM

2. Vectorized architecture for experience-replay-based methods: Experience-replay-based
methods such as DQN, DDPG, and SAC are less popular than PPO due to a few reasons: 1)
they generally have lower throughput due to a single simulation environment (also means lower
GPU utilization), and 2) they usually have higher memory requirement (e.g., DQN requires
the notorious 1M sample replay buffer which could take 32GB memory). Can we apply the
vectorized architecture to experience-replay-based methods? The vectorized environments in-
tuitively should replace replay buffer because the environments could also provide uncorrelated
experience.

3. Value function optimization: In Phasic Policy Gradient (Cobbe et al., 2021), optimizing
value functions separately turns out to be important. In DQN, the prioritized experience
replay significantly boosts performance. Can we apply prioritized experience replay to PPO
or just on PPO’s value function?

3.6 Conclusion

Reproducing PPO’s results has been difficult in the past few years. While recent works conducted
ablation studies to provide insight on the implementation details, these works are not structured
as tutorials and only focus on details concerning robotics tasks. As a result, reproducing PPO
from scratch can become a daunting experience. Instead of introducing additional improvements or
doing further ablation studies, this document takes a step back and focuses on delivering a thorough
reproduction of PPO in all accounts, as well as aggregating, documenting, and cataloging its most
salient implementation details. This document also points out software engineering challenges in
PPO and further efficiency improvement via the accelerated vectorized environments. With these, we
believe this document will help people understand PPO faster and better, facilitating customization
and research upon this versatile RL algorithm.

Chapter 3: Demystifying PPO 3.6 Conclusion

29

Chapter 4: CleanRL - Understandable DRL Library

Chapter 3 highlights the importance of understanding the implementation details of PPO and ad-
vocates using single-file implementations for implementation transparency. Shared with the same
spirit, this chapter introduced a DRL library called CleanRL that builds single-file implementations
for other popular DRL algorithms such as DQN, DDPG, SAC, and others.

CleanRL is an open-source library that provides high-quality single-file implementations of Deep
Reinforcement Learning (DRL) algorithms. These single-file implementations are self-contained
algorithm variant files such as dqn.py, ppo.py, and ppo atari.py that individually include all al-
gorithm variant’s implementation details. Such a paradigm significantly reduces the complexity and
the lines of code (LOC) in each implemented variant, which makes them quicker and easier to un-
derstand. This paradigm gives the researchers the most fine-grained control over all aspects of the
algorithm in a single file, allowing them to prototype novel features quickly. Despite having succinct
implementations, CleanRL’s codebase is thoroughly documented and benchmarked to ensure perfor-
mance is on par with reputable sources. As a result, CleanRL produces a repository tailor-fit for two
purposes: 1) understanding all implementation details of DRL algorithms and 2) quickly prototyp-
ing novel features. CleanRL’s source code can be found at https://github.com/vwxyzjn/cleanrl.
The work of this chapter is based on the following publication:

• Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html

4.1 Authorship

Shengyi Huang and Rousslan Fernand Julien Dossa co-founded CleanRL and has led its overall
development. Chang Ye contributed a prototype with Random Network Distillation80. Shengyi
Huang, Rousslan Fernand Julien Dossa, and Chang Ye are the main code reviewers and maintain-
ers. Jeff Braga contributed hundreds of hours of tracked experiments in Weights and Biases and
submitted various codebase improvements. Dipam Chakraborty contributed the Phasic Policy Gra-
dient implementation. Kinal Mehta contributed the Deep Q-learning implementation with JAX.
João G.M. Araújo contributed the Twin-Delayed Deep Deterministic Policy Gradient implemen-
tation with JAX. Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam
Chakraborty, Kinal Mehta, João G.M. Araújo wrote the paper. Despite the joint authorship of the
library, all the text in this chapter was written by Shengyi Huang.

4.2 Motivation

In recent years, Deep Reinforcement Learning (DRL) algorithms have achieved great success in
training autonomous agents for tasks ranging from playing video games directly from pixels to robotic
control16;69;81. At the same time, open-source DRL libraries also flourish in the community82–86.
Many of them have adopted good modular designs and fostered vibrant development communities.
Nevertheless, understanding all the implementation details of an algorithm remains difficult because
these details are spread to different modules. However, understanding these implementation details
is essential because they could significantly affect performance20.

In this chapter, we introduce CleanRL, a DRL library based on single-file implementations to help
researchers understand all the details of an algorithm, prototype new features, analyze experiments,
and scale the experiments with ease. CleanRL is a non-modular library. Each algorithm variant in
CleanRL is self-contained in a single file, in which the lines of code (LOC) have been trimmed to the

https://github.com/vwxyzjn/cleanrl
http://jmlr.org/papers/v23/21-1342.html

30

Figure 4.1: Filediff in Visual Studio Code: left click select ppo atari.py then cmd/ctrl +
left click select ppo continuous action.py to highlight neural network architecture differences
of PPO when applying to Atari games and MuJoCo tasks.

bare minimum. Along with succinct implementations, CleanRL’s codebase is thoroughly documented
and benchmarked to ensure performance is on par with reputable sources. For example, our Proximal
Policy Optimization (PPO)16 implementation with Atari games is a single file ppo atari.py using
only 337 LOC, yet it closely matches openai/baselines’ PPO performance in the game breakout
(Appendix A.1), making it much easier to understand the algorithm in one go. In contrast, the
researchers using modular DRL libraries often need to understand the modular design (usually 7 to
20 files) which can contain thousands of LOC. As a result, CleanRL is tailor-fit for two purposes:
1) understanding all implementation details of DRL algorithms and 2) quickly prototyping novel
features.

4.3 Single-file Implementations

Despite the many features modular DRL libraries offer, understanding all the relevant code of an
algorithm is a non-trivial effort. As an example, running the PPO model in Atari games using
Stable Baselines 3 (SB3) with a debugger involves jumping back and forth between 20 python
files that comprise 4000+ LOC82 (Appendix A.5). This makes it difficult to understand how the
algorithm works due to the sheer amount of code and its complex structure. This is a problem
because even small implementation details can have a large impact on the performance of deep RL
algorithms20, and understanding them has become increasingly important.

CleanRLmakes it much easier to understand implementation details with a simple idea — putting
all implementation details of an algorithm variant into a single file. We call this practice “single-
file implementations.” Single-file implementations allow us to focus on implementing a specific
variant without worrying about handling special cases. Also, for utilities that are not relevant to
the algorithm itself, like logging and plotting, we import third-part libraries. As a result, CleanRL
produces a codebase with an order of magnitude fewer LOC for each algorithm variant. For example,
we have a:

1. ppo.py (321 LOC) for the classic control environments, such as CartPole-v1,

2. ppo atari.py (337 LOC) for the Atari environments12,

3. ppo continuous action.py (331 LOC) for the robotics environments (e.g., MuJoCo, PyBul-
let) with continuous action spaces16.

Chapter 4: CleanRL 4.3 Single-file Implementations

31

The single-file implementations have the following benefits.
Transparent learning experience It becomes easier to recognize all aspects of the code

in one place. By looking at ppo.py, it is straightforward to recognize the core implementation
details of PPO. It also becomes easier to identify the difference between algorithm variants via
filediff. For example, comparing ppo.py with ppo atari.py shows a 30 LOC difference required
to add environment prepossessing and modify neural networks. Meanwhile, another comparison
with ppo continuous action.py shows a 25 LOC difference required to use normalization and ac-
count for continuous action space. See Figure 4.1 as an example. Being able to display the variant’s
differences explicitly has helped us explain 37 implementation details of PPO22.

Better debug interactivity Everything is located in a single file, so when debugging, the user
does not need to browse different modules like in modular libraries. Additionally, most variables
in the files exist in the global Python name scope. This means the researchers can use Ctrl+C

to stop the program execution and check most variables and their shapes in the interactive shell
(Appendix A.2). This is more convenient than using the Python’s debugger, which only shows the
variables in a specific name scope like in a function.

Painless performance attribution If a new version of our algorithm has obtained a higher
performance, we know the exact single file which is responsible for the performance improvement.
To attribute the performance improvement, we can simply do a filediff between the current and past
versions, and every line of code change is made explicit to us. In comparison, two different versions
of modular RL libraries usually involve dozens of file changes, which are more difficult to compare.

Faster prototyping experience CleanRL gives researchers fine-grained control to everything
related to the algorithm in a single file, hence making it efficient to develop prototypes without
having to subclass like in other modular RL libraries. As an example, invalid action masking36 is a
common technique used in games with large, parameterized action spaces. With CleanRL, it takes
about 40 LOC to implement22 Sec. 4, whereas in other libraries it could take substantially more
LOC (e.g., more than 600 LOC, excluding the test cases1) because of overhead such as re-factoring
the functional arguments and making more general classes.

Because of these benefits, we have also implemented single-file implementations for Deep Q-
learning81, Categorical Deep Q-learning55, Deep Deterministic Policy Gradient69, Twin-delayed
Deep Deterministic Policy Gradient70, Soft Actor-cirtic87, Phasic Policy Gradient88, and Random
Network Distillation80.

Despite of these benefits of single-file implementations, one downside is the excessive amount of
duplicate code. To help reduce the maintenance overhead, we have adopted a series of developmental
tools to format code, pin dependencies automatically, scale experiments with cloud providers, etc
(Appendix A.3).

4.4 Documentation and Benchmark

All CleanRL’s single-file implementations are thoroughly documented and benchmarked in our main
documentation site (https://docs.cleanrl.dev/). For each single-file implementation, we doc-
ument the original paper and relevant information, usage, an explanation of logged metrics, note-
worthy implementation details, and benchmark results which include learning curves, a table com-
paring performance against reputable sources when applicable, and links to the tracked experiments.
In particular, the benchmark experiments are tracked with Weights and Biases89, which allows the
users to interactively explore other tracked data such as system metrics, hyperparameters, and the
agents’ gameplay videos. For convenience, we have included tables comparing the performance of
CleanRL’s single-file implementations against reputable sources when applicable (Appendix A.1).

4.5 When to Use CleanRL

CleanRL has its own set of pros and cons like other popular modular RL libraries. For example,
modular DRL libraries, such as SB3, offer a friendly end user API — if an end user does not

1See https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/pull/25.

Chapter 4: CleanRL 4.4 Documentation and Benchmark

https://docs.cleanrl.dev/
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/pull/25

32

know much about DRL but wants to apply PPO in their tasks, SB3 would be a great fit. Among
many other benefits, SB3 makes it easy to configure different components. CleanRL does not
have a friendly end user API like agent.learn(), but it exposes all implementation details and is
easy to read, debug, modify for research, and study RL. Comparatively, CleanRL is well-suited for
researchers who need to understand all implementation details of DRL algorithms, and prototype
novel features quickly.

CleanRL complements the DRL research community with a unique developing experience. In
fact, there is a win-win situation for CleanRL and SB3: “prototype with CleanRL and port to SB3
for wider adoption in the community.” CleanRL’s codebase often allows researchers to prototype
specialized features much quicker. As shown above, the invalid action masking technique with PPO
takes ∼40 LOC to implement. Once we have rigorously validated this technique, our results and
analysis will provide concrete guidance for porting this technique to SB3, which enable our technique
to reach a wider range of audience given SB3’s friendly end user APIs.

Chapter 4: CleanRL 4.5 When to Use CleanRL

33

Chapter 5: Cleanba: Reproducible Distributed DRL

One limitation of the works presented in previous chapters is that they focus exclusively on syn-
chronous DRL that uses a single GPU. However, more recent DRL systems and algorithms are
distributed to leverage more computational resources. Despite recent progress in the field, repro-
ducibility issues have not been sufficiently explored.

In this chapter, we analyze the typical distributed actor-learner framework34 and show that it can
have reproducibility issues even if random seeds are controlled. We then introduce Cleanba, a new
open-source platform for distributed DRL that proposes a highly reproducible architecture. Cleanba
implements highly-optimized distributed variants of PPO16 and IMPALA34. Our Atari experiments
show that these variants can obtain equivalent or higher scores than moolib’s IMPALA, but with
1) 30% less training wall time under the 8 GPU setting and 2) more reproducible learning curves in
different hardware settings.

5.1 Authorship

Shengyi Huang led the design and implementation of Cleanba. Jiayi Weng and Min Lin added
numerous features to EnvPool (e.g., XLA interface, Procgen support, and bug fixes) in direct support
of Cleanba. Rujikorn Charakorn Contributed to the implementation of PPO and ran parts of the
reproducibility experiments. Zhongwen Xu helped advise and support this project. Shengyi Huang
led the writing and incorporated feedback from Rujikorn Charakorn and Zhongwen Xu.

5.2 Motivation

Deep Reinforcement Learning (DRL) is a paradigm to train autonomous agents to perform tasks.
In recent years, it has demonstrated remarkable success across various domains, including video
games11, robotics control16, chip design77, and large language model tuning90. Concurrent with
the development of DRL is the rise of distributed DRL25;34, a fast-growing field that leverages
more computing resources to train agents. Despite recent progress, reproducibility issues in dis-
tributed DRL have not been sufficiently explored. This paper introduces Cleanba, a new platform
for distributed DRL that addresses reproducibility issues under different hardware settings.

Reproducibility in DRL is a challenging issue. Not only are DRL algorithms brittle to hyperpa-
rameters and neural network architectures17, implementation details are often crucial for successfully
applying DRL but frequently omitted from publications20–22. Reproducibility issues in distributed
DRL are under-studied and arguably even more challenging. In particular, most high-profile dis-
tributed DRL works, such as Apex-DQN24, IMPALA34, R2D291, and Podracer Sebulba92 are not
(fully) open-source. Furthermore, earlier work pointed out that more actor threads not only improve
training speed but cause reproducibility issues – different hardware settings could impact the data
efficiency in a non-linear fashion15.

This need not be the case. In this paper, we seek a side-effects-free distributed DRL paradigm
in which different hardware settings could make training speed slower or faster but do not impact
data efficiency, thus making scaling results more reproducible and predictable. We first analyze the
typical actor-learner architecture and show its parallelism paradigm makes itself not reproducible
even if random seeds are controlled. We then propose a distributed architecture that is reproducible
if random seeds are controlled, but it can also benefit from interleaving the actor and learner’s
computations. Based on this architecture, we introduce our Cleanba (meaning CleanRL-style44

Podracer Sebulba) distributed DRL platform, which aims to be an easy-to-understand distributed
DRL infrastructure like CleanRL, but also be scalable as Podracer Sebulba. Cleanba implements
a distributed variant of PPO16 and IMPALA34. Next, we evaluate Cleanba’s variants against
moolib93’s IMPALA on 57 Atari games12. Our experiments show that Cleanba’s variants can

34

obtain equivalent or higher scores than moolib’s IMPALA, but with 1) 30% less training wall time
under the 8 GPU setting and 2) more reproducible learning curves in different hardware settings.

To facilitate more transparency and reproducibility, we have made available our source code
at https://github.com/vwxyzjn/cleanba, trained models at https://huggingface.co/cleanrl,
and tracked experiments at https://wandb.ai/openrlbenchmark/cleanba.

5.3 Background

Distributed DRL Systems Utilizing more computational power has been an attractive topic for
researchers. Earlier DRL methods like DQN11 were synchronous and typically used a single simula-
tion environment, which made them slow and inefficient in using hardware resources. A3C spawns
multiple actor threads; each interacts with its own copy of the environment and asynchronously ac-
cumulates gradient. To make distributed DRL more scalable, IMPALA decouples the actors and the
learners25;34. The actors produce training data asynchronously, while the learners produce new agent
parameters, which are transferred asynchronously to the actor. Actor-learner systems can achieve
higher throughput and shorter training wall time than A3C. Additional distributed actor-learner
systems include GA3C94, IMPALA34, Apex-DQN24, R2D291, and Podracer Sebulba92.

Reproducibility Issues with Different Hardware Settings Empirical evidence suggests
that increasing the number of actor threads can enhance the training speed in distributed DRL (Mnih
et al. 15, Fig. 4). However, this augmentation is not without its complications. It also impacts data
efficiency and final Atari scores (Mnih et al. 15, Fig. 3), and these effects could manifest in a non-
linear manner. While the authors found the side effects of value-based asynchronous methods to
be positive and improve data efficiency, the side effects of contemporary distributed DRL systems,
such as IMPALA, Apex-DQN, and R2D2, across various hardware configurations, have not been
sufficiently explored.

Open-source Distributed DRL Infrastructure Most distributed deep reinforcement learn-
ing (DRL) algorithms are not open-source. There have been many notable distributed DRL replica-
tions in the open-source software (OSS) community. These efforts include SEED RL25, rlplyt95,
Decentralized Distributed PPO96, Sample Factory78, HTS-RL97, torchbeast98, and moolib93.
Many of them have shown high throughput and good empirical performance in select domains. Nev-
ertheless, most of them either do not have evaluations on 57 Atari games or have various hardware
restrictions, leading to reproducibility concerns. moolib is the only OSS infrastructure that has
both evaluations on 57 Atari games in the standard 200M frames setting and can scale beyond a
single GPU setting1.

5.4 Preliminaries

Let us consider the RL problem in a Markov Decision Process (MDP) 45, where S is the state
space and A is the action space. The agent performs some actions to the environment, and the
environment transitions to another state according to its dynamics P (s′ | s, a) : S ×A× S → [0, 1].
The environment also provides a scalar reward according to the reward function R : S × A → R,
and the agent attempts to maximize the expected discounted return following a policy π:

J(π) = Eτ [G(τ)] (5.1)

where τ is the trajectory (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT)

and s0 ∼ ρ0, st ∼ P (·|st−1, at−1), at ∼ πθ(·|st), rt = r (st, at)

PPO16 is a popular algorithm that proposes a clipped policy gradient objective to help avoid

1While SEED RL also has evaluations on 57 Atari games and scale beyond 1 GPU, SEED RL trained the agents
for 40 billion frames 40 hours per game.

Chapter 5: Cleanba 5.3 Background

https://github.com/vwxyzjn/cleanba
https://huggingface.co/cleanrl
https://wandb.ai/openrlbenchmark/cleanba

35

Algorithm 4 Proximal Policy Optimization

1: Initialize environment E containing local num envs parallel sub-environments
2: Initialize policy parameters θπ, value parameters θv, optimizer O
3: Initialize observation snext, done flag dnext
4: for i = 0,1,2,..., I do
5: Set D = (s, a, log π(a|s), r, d, v) as tuple of 2D arrays
6: for t = 0,1,2,..., num steps do ▷ Rollout Phase
7: Cache ot = snext and dt = dnext
8: Get at ∼ π(·|st; θπ) and vt = v(st; θv)
9: Step simulator: snext, rt, dnext = E.step(at)

10: Store st, dt, vt, at, log π(at|st; θπ), rt in D
11: Estimate next value vnext = v(snext) ▷ Learning Phase

12: Compute advantage ˆAadv
π and return R using D and vnext

13: Prepare the batch B = D, ˆAadv
π , R and flatten B

14: for epoch = 0,1,2,..., update epochs do
15: for mini-batch M of size m in B do
16: Normalize advantage M. ˆAadv

π

17: Compute policy loss Lπ, value loss LV , and entropy loss LS using M
18: Back-propagate joint loss L = −Lπ + c1L

V − c2L
S

19: Clip maximum gradient norm of θπ and θv to 0.5
20: Step optimizer O w.r.t. θπ and θv

unstable updates16;19:

JCLIP(πθ) = Eτ

[
T−1∑
t=0

min
(
rt(θ)Â

adv
π (st, at), clip (rt(θ), 1− ϵ, 1 + ϵ) Âadv

π (st, at)
)]

(5.2)

where πθold is the policy parameter before the update, rt(θ) =
πθ(at|st)

πθold
(at|st) , Â

adv
π is an advantage

estimator called Generalized Advantage Estimator46, and ϵ is PPO’s clipped coefficient. During the
optimization phase, the agent also learns the value function and maximizes the policy’s entropy,
therefore optimizing the following joint objective:

JJOINT(θ) = JCLIP(πθ)− c1J
VF(θ) + c2S[πθ], (5.3)

where c1, c2 are coefficients, S is an entropy bonus, and JVF is the squared error loss for the value
function associated with πθ. Algorithm 4 shows the pseudocode of PPO that more accurately reflects
how PPO is implemented in the original codebase2. For more detail on PPO’s implementation,
see22. Given this pseudocode, the following list unifies the nomenclature/terminology of PPO’s key
hyperparameters.

• world size is the number of instances of training processes; typically this is 1 (e.g., you have
a single GPU).

• local num envs is the number of parallel environments PPO interacts within an instance of
the training process (see line 1). num envs = world size ∗ local num envs is the total number
of environments across all training instances.

• num steps is the number of steps in which the agent samples a batch of local num envs actions
and receives a batch of local num envs next observations, rewards, and done flags from the
simulator (see line 6), where the done flags signal if the episodes are terminated or truncated.
num steps has many names, such as the “sampling horizon”95 and “unroll length”99.

2https://github.com/openai/baselines

Chapter 5: Cleanba 5.4 Preliminaries

https://github.com/openai/baselines

36

• local batch size is the batch size calculated as local num envs ∗ num steps within an
instance of the training process (local batch size is the size of the B in line 13).

• batch size = world size ∗ local batch size is the aggregated batch size across all training
instances.

• update epochs is the number of update epochs that the agent goes through the training data
in B (see line 14).

• num minibatches is the number of mini-batches that PPO splits B into (see line 15).

• local minibatch size is m = local batch size / num minibatches, the size of each mini-
batch M (see line 15). minibatch size = world size ∗ local minibatch size is the aggre-
gated batch size across all training instances.

To make understanding more concrete, let us consider an example of Atari training. Typically,
PPO uses a single training instance (i.e., world size = 1), local num envs = num envs = 8, and
num steps = 128. In the rollout phase (line 6-10), the agent collects a batch of 8 ∗ 128 = 1024
data points in D. Then, suppose num minibatches = 4, D is evenly split to 4 mini-batches of size
m = 1024/4 = 256. Next, if K = 4, the agent would perform K * num minibatches = 16 gradient
updates in the learning phase (line 11-20).

We consider two options to scale to larger training data. Option 1 is to increment local num envs

– the agent interacts with more environments, and as a result, the training data is larger. The second
option is to increment world size – have two or more copies of Algorithm 4 running in parallel and
average the gradient of the copies in line 20. Option 2 is especially desirable when the users want
to leverage more computational resources, such as GPUs.

Note that both options can be equivalent in terms of hyperparameters. For example, when setting
world size = 2, the agent effectively interacts with two distinct sets of local num envs environ-
ments, making its num envs doubled. To make option 1 achieve the same hyperparameters, we just
need to double its local num envs. Below is a table summarizing the resulting hyperparameters of
both options.

Hyperparameter Option 1:
Increment
local num envs

Option 2: Incre-
ment world size

world size 1 2
local num envs 120 60
num envs 120 120
num steps 128 128
local batch size 15360 7680
batch size 15360 15360
num minibatches 4 4
local minibatch size 3840 1920
minibatch size 3840 3840

Importantly, we can get the same hyperparameter configuration for PPO by adjusting local num envs

and world size accordingly. That is, we can obtain the same num envs, batch size, and minibatch size

core hyperparameters.

5.5 Reproducibility Issues in IMPALA

To advance scientific progress, it is important to understand how to attain reliable reproducibility
with distributed DRL. Generally, there are three components to reproducing identical model pa-

Chapter 5: Cleanba 5.5 Reproducibility Issues in IMPALA

37

IMPALA Actor-Learner Architecture

1 batch_size = 32

2 agent = Agent()

3 data_Q = queue()

4

5 def actor():

6 while True:

7 data = rollout(agent.param, 1)

8

9

10 data_Q.put(data)

11 def learner():

12 for _ in range(1, ITER):

13 data = data_Q.get_many(batch_size)

14 agent.learn(data)

15 broadcast_to_actors(agent.param)

16 for _ in range(num_actors):

17 thread(actor).start()

18 thread(learner).start()

Cleanba’s architecture

batch_size = 32

agent = Agent()

data_Q = queue(len=1)

param_Q = queue(len=1)

def actor():

for i in range(1, ITER):

if i != 2:

params = param_Q.get()

data = rollout(params, batch_size)

data_Q.put(data)

def learner():

for _ in range(1, ITER):

data = data_Q.get()

agent.learn(data)

param_Q.put(agent.param)

param_Q.put(agent.param)

thread(actor).start()

thread(learner).start()

Figure 5.1: The pseudocode for IMPALA architecture (left) and Cleanba’s architecture
(right). Colors are used to highlight the code differences between the two architectures. The
rollout(params, num envs) function collects rollout data on num envs independent environ-
ments for M (num steps) steps.

rameters across runs3: 1) seeding the neural networks, 2) seeding the environments, and 3) using
the same hyperparameters. When achieving completing these components, PPO in Algorithm 4
becomes a fully deterministic algorithm and can reproduce identical models, learning curves, and
losses. In this section, we show that IMPALA has additional non-determinism by nature, which
arises from the concurrent scheduling of different actor threads. This non-determinism could further
cause subtle learning results and reproducibility issues.

5.5.1 Non-determinisim of IMPALA’s Architecture

Figure 5.1 lists a typical pseudocode of IMPALA, which spawns many actor CPU threads (lines
16-17) to collect rollout data, which are then transferred into a queue, from which the learner gets
data and performs an optimization step. The new policy is then asynchronously broadcasted to all
the actor threads4.

It is important to note that IMPALA struggles to consistently reproduce identical model pa-
rameters across multiple runs when the actor count exceeds one. This difficulty persists even when
the neural networks and environments are seeded. This is primarily due to the actors running at
varying rates to populate the rollout data queue, which results in differing rollout data across runs.
Consequently, the reproduction of identical model parameters becomes an unlikely outcome.

However, non-determinism can be desirable in parallel programming because they make programs
faster without making outputs significantly different. For example, some of NVIDIA’s CuDNN
operations are inherently non-determinisitic5. As a result, it is more important to investigate if this
non-determinism could cause a performance difference, in terms of learning curves.

5.5.2 Algorithmic Reproducibility Issues

A natural question arises: what happens when the learner produces a new policy while the actor
is in the middle of producing a trajectory? It turns out multiple policy versions could contribute

3Achieving perfect reproducibility is difficult in the context of deep learning because non-determinism is everywhere,
such as in GPU and operating systems1.

4Sharing a single set of parameters is the default setting for original IMPALA34

5https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility

Chapter 5: Cleanba 5.5 Reproducibility Issues in IMPALA

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility

38

Figure 5.2: Episodic return and value function loss of two sets of monobeast experiments that
use the exact same hyperparameters, but the orange set of experiments has its learner update
manually delayed for 1 second.

to a single trajectory of length num steps, especially if the learner updates are fast and frequent.
However, this impacts the rollout data construction in a non-trivial way. From a reproducibility
point of view, it is important to realize the frequency at which the policies are updated is a source
of non-determinism.

To demonstrate this effect, we manufacture a specific experiment that magnifies this non-
determinism in monobeast’s IMPALA. For the controlled group, we decreased the number of tra-
jectories in the batch from 32 to 8 to reduce training time, thus making the actor’s policy updates
more frequent. We further used 80 actor threads and increased monobeast’s default unroll length
(num steps) from 20 to 240 to increase the chance of observing the actor’s policy updates in the
middle of a trajectory. For the experimental group, we manually slowed down the policy broadcasting
by sleeping the learner for 1 second after the policy updates in order to simulate a case where the
learner is significantly slower (such as when running the learner on CPU).

We found that in the control group, the actors, on average, changed their policy versions 12-13
times in the middle of the 240-length trajectory (Appendix C.5). In the experimental group, because
of the manual slowdown in broadcasting the learner’s policy, the actors, on average, changed the
policy one time. We note that the results vary on different hardware settings as well. For example,
the control group changed their policy versions, on average, eight times when using 40 actor threads.
We noted that in moolib, the actor’s policy could also change mid-rollout.

Figure 5.2 demonstrates the empirical effect of the experiments. Note that the learning and loss
curves looked notably different across ten random seeds, even though the control and experimental
group have the exact same hyperparameters. This experiment shows that IMPALA algorithmically
could be susceptible to reproducibility issues across different hardware settings. While Figure 5.2
only shows the experimental results on one environment, the primary purpose of it is to show that
this issue exists and is barely predictable. Furthermore, this type of issue can be much more subtle
and difficult to diagnose at a much larger scale, so it is important that we investigate them.

5.6 Towards Reproducible Distributed DRL

Despite these reproducibility issues, the actor-learner architecture is useful because it allows us to
interleave the computations of the actors and learners. In this work, we address the reproducibility
issues mentioned above by 1) decoupling hyperparameters and hardware settings and 2) proposing
a synchronization mechanism that makes distributed DRL reproducible.

Chapter 5: Cleanba 5.6 Towards Reproducible Distributed DRL

39

Table 5.1: The different architectures and their rollout data compositions.

Iteration 1 2 3

Cleanba’s Architecture, Actor π1 → Dπ1 π1 → Dπ1 π2 → Dπ2

Cleanba’s Architecture, Learner Dπ1 → π2 Dπ1 → π3

Synchronous Architecture π1 → Dπ1 , Dπ1 → π2 π2 → Dπ2 Dπ2 → π3 π3 → Dπ3 Dπ3 → π4

5.6.1 Decoupling hyperparameters and hardware settings

As mentioned in the previous section, different numbers of actor threads could make policy updates
more or less frequent in the middle of a trajectory generation. This is unpredictable and need not
be the case. A different number of actors also creates a different number of simulation environments
and thus should be recognized as a hyperparameter setting.

To make a more clarified setting, we advocate decoupling the number of actor threads into two
separate hyperparameters: 1) the number of environments, corresponding to local num envs in
Algorithm 4, and 2) the number of CPUs. In this case, we can use a different number of CPUs to
simulate a given number of environments. This decoupled interface is readily provided by EnvPool37,
which we use in our proposed architecture.

5.6.2 Deterministic Rollout Data Composition

To address the non-determinism in rollout data composition, we propose ourCleanba’s architecture,
which retains the benefit of interleaving actor-learner computations but can produce deterministic
rollout data composition.

At its core, Cleanba’s architecture is a simple mechanism for synchronizing the actor and learner,
ensuring the actor’s policy version is always exactly one step behind the learner’s policy version.
Figure 5.1 is the pseudocode of the architecture, where the rollout function corresponds to the
rollout phase and agent.learn corresponds to the learning phase in PPO. While we used PPO as
an example, Cleanba’s architecture can be similarly used in IMPALA.

Let us use πi to denote the policy of version i and Dπi
the rollout data created by πi. In the second

iteration of Figure 5.1, we skipped the param Q.get() call, so π1 → Dπ1
happens concurrently with

Dπ1 → π2. Because Queue.get is blocking when the queue is empty and Queue.put is blocking
when the queue is full (we set the maximum size to be 1), we made sure the actor’s policy version is
exactly 1 version preceding the learner’s policy version, as demonstrated in Table 5.1. As a result,
Cleanba’s architecture can interleave the actor and learner’s computation.

Cleanba’s architecture above has several benefits. First, it is easy to reason and reproduce. As
highlighted in the table above, we can ascertain the specific policy used for collecting the rollout
data, and we know with certainty that the size of the data is local batch size. This knowledge
about which policy generates the rollout data enhances the transparency and reproducibility of
distributed RL. Second, Cleanba’s architecture is easy to debug for throughput. For diagnosing
throughput, we can evaluate the time taken for rollout Q.get() and param Q.get(). If, on average,
rollout Q.get() consumes less time than param Q.get(), it becomes evident that learning is the
bottleneck, and vice versa. This further means we can scale architecture to a distributed setting
while maintaining good reproducibility principles.

Based on Cleanba’s architecture, this work introduces Cleanba as a reproducible distributed
DRL platform. Cleanba is inspired by DeepMind’s Sebulba Podracer architecture92 and is also
highly efficient. Its implementation uses JAX100 and EnvPool37, both of which are designed to be
efficient. To improve the learner’s throughput, we allow using multiple learner devices via pmap. To
improve the system’s scalability, we use jax.distibuted to distribute to more nodes.

Chapter 5: Cleanba 5.6 Towards Reproducible Distributed DRL

40

0M 10M 20M 30M 40M 50M
Steps

0.0

0.5

1.0

1.5

M
ed

ia
n

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

0 50 100 150 200 250
Time (m)

Moolib IMPALA, 1 A100, 10 CPU
Moolib IMPALA, 8 A100, 80 CPU
Cleanba IMPALA, 1 A100, 10 CPU
Cleanba IMPALA, 8 A100, 50 CPU
Cleanba PPO, 1 A100, 10 CPU
Cleanba PPO, 8 A100, 50 CPU

Monobeast IMPALA, 1 A100, 10 CPU
Monobeast IMPALA, 1 A100, 80 CPU
CleanRL PPO (Sync), 1 A100, 10 CPU
Cleanba PPO (Sync), 8 A100, 50 CPU
Cleanba IMPALA (Sync), 8 A100, 50 CPU

0M 10M 20M 30M 40M 50M
Steps

0.0

0.5

1.0

1.5

2.0

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

0 2 4 6 8
Human Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

1.2 1.4 1.6 1.8
Cleanba IMPALA (Sync), 8 A100, 50 CPU, 37.4 mins

Cleanba PPO (Sync), 8 A100, 50 CPU, 54.9 mins
CleanRL PPO (Sync), 1 A100, 10 CPU, 234.8 mins
Monobeast IMPALA, 1 A100, 80 CPU, 102.5 mins
Monobeast IMPALA, 1 A100, 10 CPU, 929.8 mins

Cleanba PPO, 8 A100, 50 CPU, 30.2 mins
Cleanba PPO, 1 A100, 10 CPU, 235.0 mins

Cleanba IMPALA, 8 A100, 50 CPU, 27.0 mins
Cleanba IMPALA, 1 A100, 10 CPU, 154.1 mins

Moolib IMPALA, 8 A100, 80 CPU, 41.9 mins
Moolib IMPALA, 1 A100, 10 CPU, 163.4 mins

Median

1.50 1.75 2.00

IQM

6 9 12 15

Mean

0.24 0.27 0.30 0.33

Optimality Gap

Figure 5.3: Top figure: the median human-normalized scores of Cleanba variants compared
with moolib. Middle figure: the IQM human-normalized scores and performance profile1.
Bottom figure: the average runtime in minutes and aggregate human normalized score metrics
with 95% stratified bootstrap CIs.

5.7 Experiments

We tested the Cleanba variants on Atari games12. To make a more direct and fair comparison,
we controlled the hardware and environment simulation setups and compared only the reference
IMPALA implementations in moolib and monobeast6 and the reference PPO implementation in
CleanRL44. As a base comparison, we used an A100 GPU and 10 CPU setting since 10 actor
CPU is the default moolib’s setting. We also conducted experiments under the 8 A100 setting,
where Cleanba’s variants use 50 CPUs. The moolib and monobeast experiments use 80 CPUs7.

6We wanted to test out IMPALA’s official source code released in deepmind/scalable agent, but it was built with
tensorflow 1.x which does not support the A100 GPU tested in this paper.

7By default, moolib uses 256 environments, 10 actor CPUs, and a single GPU. We followed the recommended
scaling instructions to add 8 training GPU-powered peers, which in total used 2048 environments, 80 actor CPUs,
and 8 GPUs. While the training time was reduced to about 27 minutes, sample efficiency dropped, and it obtained a

Chapter 5: Cleanba 5.7 Experiments

41

0M 20M 40M
0

200

400

Breakout-v5

0M 20M 40M

0

50

100

Boxing-v5

0M 20M 40M
0

50000

100000

DemonAttack-v5

0M 20M 40M
0

2000

4000
Gravitar-v5

0M 20M 40M
0

5000

10000

NameThisGame-v5

0M 20M 40M
0

20000

TimePilot-v5

0M 20M 40M
0

200000

UpNDown-v5

0M 20M 40M
0

5000

10000
WizardOfWor-v5

Ep
iso

di
c

Re
tu

rn

Figure 5.4: The episodic returns of Cleanba variants compared with moolib.

All experiments used 84× 84 images with greyscale, an action repeat of 4, 4 stacked frames, and a
maximum of 108,000 frames. We followed the recommended Atari evaluation protocol by Machado
et al. 47 , which used sticky action with a probability of 25%, no loss of life signal, and the full action
space. Throughout all experiments, the agents used the IMPALA’s Resnet architecture34, ran for
200M frames with three random seeds8. The hyperparameters and the learning curves can be found
in Appendix C.1.

Figure 5.3 shows the experiment results, such as median HNS learning curves, interquartile
mean (IQM) learning curves, performance profile, and 95% stratified bootstrap confidence intervals
for the mean, median, IQM, and optimality gap (the amount by which the algorithm fails to meet
a minimum normalized score of 1)1.

5.7.1 Comparison with moolib’s IMPALA

Under the 10 CPU and 1 A100 setting, Cleanba’s IMPALA obtains a similar level of median HNS as
moolib and is slightly faster. Cleanba’s PPO obtains a higher median HNS but takes longer training
time, likely due to the longer training step time spent on reusing rollout data 4 times.

Under the 8 GPU setting, we found Cleanba’s IMPALA and PPO can match or exceed moolib’s
IMPALA’s scores in 30% less wall time. The CIs for the median are large, especially for Cleanba’s
IMPALA and moolib’s IMPALA. However, we found the Cleanba’s variants to obtain higher in-
terquartile mean (IQM) and mean human-normalized scores. Additionally, the performance profile
reveals that Cleanba’s PPO has better performance variability across 57 Atari games than Cleanba’s
IMPALA and moolib’s IMPALA.

Cleanba’s variants are also more reproducible. We examined the individual learning curves and
produced Figure 5.4. We found that Cleanba’s variants are much more likely to produce identical
learning curves, whereas moolib’s learning curves can be much more unpredictable in two hardware
settings. Nevertheless, we noticed the learning curves were not smooth in around 10 environments,
which probably had more difficult reward surfaces101. However, they ultimately caused a high
variance in Cleanba’s IMPALA’s final median HNS.

5.7.2 Comparison with monobeast’s IMPALA

The monobeast experiments are interesting in several ways. First, it produces a higher median HNS
than moolib’s IMPALA, which is the opposite of what was shown in Mella et al. 93 . This is probably
because Mella et al. 93 used “comparable environment settings” instead of the same environment

catastrophic 28.51% median HNS after 200M frames. We suspected the drop was due to the 2048 environments used,
so we set the total number of environments back to 256. Furthermore, we did not restrict moolib to use 50 CPUs
because we worried it might change the learning behaviors due to the issues mentioned in Section 5.5, so we kept the
default scaling to 80 CPUs. For comparison with moolib, monobeast experiments also use 80 CPUs.

8For the moolib experiment, we conducted two sets of 3 random seeds. We reported the results with higher IQM
and lower median. See Appendix C.2.

Chapter 5: Cleanba 5.7 Experiments

42

settings used in our experiments. Second, the monobeast experiments appear robust in two different
hardware settings in practice, despite the reproducibility issues we showed in Section 5.5.2.

While monobeast obtained high scores, it is significantly slower in the 1 A100 and 10 CPU
settings due to poor GPU utilization. It also does not work with more than a single-GPU setting
and should scale less efficiently with larger networks because actor threads only run on CPUs when
compared to moolib and Cleanba’s variants.

5.7.3 Comparison with CleanRL’s PPO

CleanRL’s PPO showed significantly better data efficiency, likely due to the fact that it always learns
from the most recent policy, unlike Cleanba’s architecture which learns from the second most recent
policy. To further study this, we can simulate the synchronous architecture with Cleanba’s variants
by commenting out line 7 (if i != 2:) in Figure 5.1. When done so, we noticed Cleanba’s PPO
(Sync) achieved similar data efficiency as CleanRL’s PPO at the cost of being around 50% slower,
showing that Cleanba’s PPO can act as a multi-GPU alternative to CleanRL’s PPO. However, we
noticed Cleanba’s IMPALA (Sync) did not benefit from increased data efficiency when using the
synchronous architecture.

5.8 Conclusion

In this paper, we have presented Cleanba, a distributed deep reinforcement learning platform that
prioritizes reproducibility. Our analysis shows that the existing actor-learner framework can cause
reproducibility issues due to the non-determinism arising from the concurrent scheduling of threads
and algorithmic issues. To address those issues, we propose a more principled architecture that
clarifies which policies are used to create rollout data, providing a solid foundation for reproducibility.

Our Atari experiments demonstrate that Cleanba’s PPO and IMPALA achieve equivalent or
better data efficiency comparable to moolib’s IMPALA but with 30% less wall time under the 8
GPU setting. Furthermore, Cleanba’s variants are more likely to produce identical learning curves
across different hardware configurations. We also showed that Cleanba’s variants can scale to more
accelerators and train agents faster than monobeast. We believe that Cleanba will be a valuable
platform for the research community to conduct further open-source distributed RL research that
has a more principled approach to reproducibility.

Chapter 5: Cleanba 5.8 Conclusion

43

Part II

Efficient Deep Reinforcement Learning Testbeds and Techniques

44

Chapter 6: Game Representation in RTS Games

Part II is about designing efficient DRL testbeds and techniques. In this chapter, we begin our
journey by creating a DRL interface for the classic real-time strategy (RTS) game simulator µRTS,
which will serve as a testbed for researching efficient DRL techniques in Chapter 7-9. While we study
these efficient techniques in the context of µRTS, the concepts can be applied to other domains.

Specifically, this chapter presents an initial study comparing different observation and action
space representations for Deep Reinforcement Learning (DRL) in the context of Real-time Strategy
(RTS) games. Specifically, we compare two representations: (1) a global representation where the
observation represents the whole game state, and the RL agent needs to choose which unit to issue
actions to, and which actions to execute; and (2) a local representation where the observation is
represented from the point of view of an individual unit, and the RL agent picks actions for each
unit independently. We evaluate these representations in µRTS showing that the local representation
seems to outperform the global representation when training agents with the task of harvesting
resources. The work of this chapter is based on the following workshop paper:

• Shengyi Huang and Santiago Ontañón. Comparing observation and action representations for
deep reinforcement learning in µrts. AIIDE Workshop on Artificial Intelligence for Strategy
Games, 2019

While in this chapter we concluded that the agent using the global representation performs
poorly, in hindsight, this conclusion no longer holds significant weight in the light of the invalid action
masking technique presented in Chapter 7. The agent that learns under the global representation
struggles to collect any resources because the search space is made artificially too large. Once
we incorporate invalid action masking, the agent can learn much more efficiently under the global
representation, which has other benefits such as more complete information for the agent and hence
posing a higher learning potential.

6.1 Motivation

Real-time strategy (RTS) games pose a significant challenge for artificial intelligence (AI)29;30. They
are complex due to a variety of reasons: (1) players need to issue actions in real-time, which means
agents have a very limited time to produce what is the next action to execute, (2) most RTS games
are partially observable, i.e., a player might not always able to observe the opponents’ strategies and
actions, and (3) RTS games have very large action spaces.

Recent application of Deep Reinforcement Learning (DRL) to RTS games introduces additional
challenges such as (1) dealing with extremely sparse rewards and (2) designing efficient observation
and action space representations. In this document, we attack the latter challenge by comparing
two intuitive representations. The first one is a global representation that enables the DRL agent
to observe the entire game state as a series of features, and issue global commands to choose both
which unit to issue actions to and which actions to execute. The second one is a local representation
where the DRL agent sequentially selects actions for individual units independently. We used µRTS
as our testbed to evaluate the performance of these representations and our experiments show that:
(1) the local representation seems to outperform global representation, probably because the agent
using local representation does not have to learn how to select a unit; (2) both local and global
representation significantly outperform a random baseline agent.

6.2 Background

Real-time Strategy (RTS) games are complex adversarial domains, typically simulating battles be-
tween many military units, that pose a significant challenge to both human and artificial intelli-

45

"max"
player
units

"min"
player
units

Figure 6.1: A screenshot of µRTS. Square units are “bases” (light grey, that can produce work-
ers), “barracks” (dark grey, that can produce military units), and “resources mines” (green, from
where workers can extract resources to produce more units), the circular units are “workers”
(small, dark grey) and military units (large, yellow or light blue).

gence29. Designing AI techniques for RTS games is challenging because (1) they have huge decision
spaces: the branching factor of a typical RTS game, StarCraft, has been estimated to be on the
order of 1050 or higher30; (2) they are real-time, which means that these games typically execute at
10 to 50 decision cycles per second, leaving players with just a fraction of a second to decide the
next action, players can issue actions simultaneously, and actions are durative, and (3) most of them
are partially observable and players must sent units to scout the map.

In the experiments reported in this document, we employed µRTS1, a simple RTS game maintain-
ing the essential features that make RTS games challenging from an AI point of view: simultaneous
and durative actions, large branching factors and real-time decision making. Although the game can
be configured to be partially observably and non-deterministic, those settings are turned off for all
the experiments presented in this document.

A screenshot of the game is shown in Figure 6.1. The squared units in green are Minerals with
numbers on them indicating the remaining resources. The units with blue outline belong to player 1
and those with red outline belong to player 2. The light grey squared units are Bases with numbers
indicating the amount of resources owned by the player, while the darker grey squared units are
the Barracks. Movable units have round shapes with grey units being Workers, orange units being
Lights, yellow being Heavy units (not shown in the figure) and blue units being Ranged.

Moreover, to ease reinforcement learning research in µRTS, we have prepared an OpenAI gym
wrapper for the game, which we have made available to the research community2.

One of the earliest applications of reinforcement learning to RTS games is the work of Concurrent

1https://github.com/santiontanon/microrts
2https://github.com/vwxyzjn/gym-microrts

Chapter 6: Game Representation 6.2 Background

https://github.com/santiontanon/microrts
https://github.com/vwxyzjn/gym-microrts

46

Hierarchical Reinforcement Learning (CHRL) with Q-learning — Marthi et al. experimented with
the Wargus game and demonstrated the use of Alisp language to specify a list of desired tasks and
use Q-learning to tune the parameters102. They showed that the CHRL could significantly improve
the agents’ performance compared to flat concurrent hierarchical Q-learning.

In addition, Jaidee and Muñoz-Avila have leveraged Q-learning to learn a policy for each class
of units (peasants, knights, barracks, etc), which drastically reduced the memory requirement of
Q-learning103. The trade-off is the lack of coordination between agents since each agent only learns
to control a certain type of units or buildings. That being said, they were able to demonstrate good
performance by defeating the built-in AI 80% of the time.

Another idea explored in RTS games is that of options, which are temporally extended actions104.
The agent first needs to evaluate which option to choose, and then needs to determine when to termi-
nate the options chosen. The options framework also exhibits a sense of Hierarchical Reinforcement
Learning (HRL) since raw actions are primitives compared to options. Researchers have tried to
combine options and heuristic algorithms to simplify the game space105.

In recent years, Deep Reinforcement Learning (DRL) approaches have received significant atten-
tion in a number of games such as classic Atari games11 and Go106. Over the years, researchers have
introduced different type of DRL algorithms. Most notably, Asynchronous Advantage Actor-Critic
(A3C), Deep Q-Network (DQN), and Proximal Policy Gradient (PPO) have gained the state-of-the-
art results in a variety of games11;15;16.

In 2017, researchers at Deepmind started tackling the challenge of training agents for StarCraft
II, one of the most complex and popular RTS games in history107. They conducted a series of
experiments using A3C15 on the full game as well as a collection of mini-games such as training
the “marines” units to defeat the “roaches” units in StarCraft II. They were able to show good
converging performance for the mini-games but had no material success in the full game setting.
However, they recently demonstrated a bot “AlphaStar” that defeats a professional StarCraft II
Protoss player in the full game setting.

Researchers at Facebook also joined this line of research by publishing an open-sourced RTS
game research platform ELF108. For simplicity, they conducted experiments utilizing hard-coded
actions such as BUILD BARRACKS, which “automatically picks a worker to build barracks at an
empty location, if the player can afford”. Through these high-level actions, they trained agents
using A3C, curriculum training, MCTS, and show the trained agent is able to defeat the built-in
scripted bots in the full-game setting. Notably, researchers at Tencent used similar approach to
hard-code high-level actions in StarCraft II and defeated the cheating AI in the full-game setting by
commencing early attacks67. Compared to this work, we are interested in RL settings that do not
require hand-crafted macro actions.

Moreover, Liu et al. studied the application of HRL to incorporate the generation of macro
actions through expert replays109. Lee et al. also hard-coded a collection of macro actions for zergs
and trained agents combining DQN and LSTM, obtaining a 83% winning rate in the AIIDE 2017
StarCraft AI competition110.

To address the action coordination problem, Samvelyan, Rashid et al. built the StarCraft Multi-
Agent Challenge (SMAC) for Multi-agent Reinforcement Learning (MARL), where each unit is con-
trolled by a separate agent111. They compared popular MARL algorithms such as QMIX, COMA,
VDN, and IQL in mini maps that usually features battle between different agents112–115.

Though these previous research show important results, there has not been any published study
comparing the relative merits of different types of observation and action representations in RTS
games, which is the key issue that our paper starts to address.

6.3 Gym-µRTS: Comparing Game Representations

We designed two pairs of observation and action representations for comparing performance. The
first one is a global representation that enables the RL agent to observe the entire game and issue
global commands to choose both which unit to issue actions to and which actions to execute. The
second one is a local representation where the agent is externally given a specific unit to control and

Chapter 6: Game Representation 6.3 Gym-µRTS: Comparing Game Representations

47

Table 6.1: The list of feature maps and their descriptions.

Global Representation

Features Possible values

Hit Points 0, 1, 2, 3, 4, 5, ≥ 6
Resources 0, 1, 2, 3, 4, 5, ≥ 6
Owner player 1, -, player 2

Unit Types -, resource, base, barrack, worker, light, heavy
Action -, move, harvest, return, produce, attack

Local Representation

Features Possible values

Hit Points wall, 0, 1, 2, 3, 4, 5, ≥ 6
Resources wall, 0, 1, 2, 3, 4, 5, ≥ 6
Owners wall, player 1, -, player 2

Unit Types wall, -, resource, base, barrack, worker, light, heavy
Action wall, -, move, harvest, return, produce, attack

just has to pick actions for that unit. Both representations are designed to train agents to harvest
resources as fast as possible.

6.3.1 Global Representation

We utilized flattened one-hot feature maps as our observation representation similar to PySC2107

and a couple pre-existing works on observation evaluation functions on µRTS116. Assuming the game
map is represented as a grid, a feature map is a matrix of the same dimensions as the game map,
where in each cell of the matrix we have a value that represents some aspect of the corresponding
game map grid cell. For simplicity, we assume that each feature map takes discrete values. The
exhaustive list of feature maps and their description is presented at Table 6.1.

Let h and w be the height and width of the map respectively, we construct the observation as a
set of nf = 5 feature maps and that all feature maps can take the same number of values nc. Thus,
each feature map is a vector of length h∗w, and the observation can be represented as a nf × (h∗w)
matrix. Finally, in order to facilitate learning, we use a one-hot-encoding representation, and thus
the observation is represented as a nf × (h∗w)×nc tensor (nc is the number of values of the feature
plane that can take the larger number of values). The dimensions of these tensors are usually referred
to as their shape in common deep learning libraries, and thus we will use this term from now on.
Moreover, in the experiments reported in this document nf = 5 and nc = 7.

Then, to execute an action in µRTS, the RL agent needs to specify the unit, the action types,
and the parameters of the action to execute. For our experiments that only focus on the task of
harvesting resources, the set of target action types are NOOP (no operation, represented simply as
a - in Table 6.1), Move, Harvest, Return. Some of these action types requires an action parameter
that specifies the direction at which the action is issued. The list of available action parameter is
Up, Right, Down, Left. So if the agent wants to command a worker to harvest the resources located
left to it, the agent has to specify the worker, set action type to Harvest, and action parameter to
Left.

Since unit IDs change from game to game, in order to learn generalizable policies, the global
representation does not require the agent to specify the unit ID. Instead, the RL agent predicts the
coordinates of the unit it wants to control.

Therefore, we construct the action at time step t as a vector with 4 elements:
[
axt , a

y
t , a

action type
t ,

aaction param
t

]
, where axt , a

y
t , a

action type
t , aaction param

t are integers signifying the selected x-coordinate,

y-coordinate, action type, and action parameters, respectively, predicted using one-hot encoding
representations. Moreover:

1. If the action produced is invalid in µRTS, the action will be replaced by a NOOP action. Thus,

Chapter 6: Game Representation 6.3 Gym-µRTS: Comparing Game Representations

48

Figure 6.2: The local feature maps of shape (2w + 1) × (2w + 1) = 3 × 3 outlined in red of
the an unit (the red circle) when w = 1. The blue crosses indicate the cells are the walls of the
game map.

it is up to the RL agent to learn which are the valid actions.

2. This representation varies from PYSC2’s action representation that uses the actions themselves
to select units and perform actions on them.

3. The agent can only issue one action to one unit at each time step.

In summary, the global representation encodes the entire game state for the RL agent, who needs
to learn to choose which unit to control (by outputting the unit’s coordinates) and which action
type and parameter to be issued at each time step.

6.3.2 Local Representation

In this representation, the agent perceives the game from the point of view of a particular unit and
only needs to issue action to that unit. In other words, the agent does not have to learn to pick
which unit to control.

We utilized flattened one-hot local feature maps as our observation representation. Consider a
parameter of window size w that specifies “how far can an unit see”. Specifically, a window size
w = 1 means each unit is able to observe the cell it is located and all the cells that are 1 distance
away from it in either axis, as shown in Figure 6.2. Note that if the unit sees a cell beyond the
boundary of the map, we consider that cell a “Wall” (Note that the global representation does not
need such “Wall” unit type because the agent always sees the entire map and does not see beyond
the boundary of the map). A local feature map is thus a matrix of dimension (2w + 1)× (2w + 1).
A comprehensive list of local feature maps and their descriptions can be found in Table 6.1.

At each time step, the agent is given a target unit (we rotate which unit is the focus at consecutive
game frames). For instance, assuming there are 3 units u1, u2, u3, then u1, u2, u3, u1, u2, ... will be
selected at time step 1, 2, 3, 4, 5, ..., respectively. Given the selected unit at each time step, we
construct observation to be a set of nf local feature maps from the point of view of the said unit
according to w, with all of them can take the same number of discrete values nc. Similarly, we use
one-hot-encoding representation and the observation is represented as a nf × (2w+1)2 × nc tensor,
where nf = 5, nc = 8.

For action execution, since the unit is already selected, the agent only needs to predict the
action type and parameter. Therefore, we construct the action at time step t as a vector with

2 element:
[
aaction type
t , aaction param

t

]
, where aaction type

t , aaction param
t are integers that signifies the

selected action type, and action parameters, respectively (predicted as one-hot vectors). As before,
if the action issued is not valid in µRTS, it will be replaced by a NOOP action.

In summary, the local representation contains the local game state features from the point of
view of a selected unit for the RL agent, and it needs to learn which action type and parameter to
be issued at each time step. Note that it does not have to learn how to select a unit to control, but
only how to interact with its surrounding observations.

Chapter 6: Game Representation 6.3 Gym-µRTS: Comparing Game Representations

49

Policy	Network

Value	Network

Observation	(5,	hw,	8)

Policy	Logits
(h+w+4+4)

Height	Logits	
(h)

Width	Logits	
(w)

Action	Type	Logits	
(4)

Action	Params	Logits
(4)

Value	(1)

Height	Probs	
(h)

Width	Probs	
(w)

Action	Type	Probs	
(4)

Action	Params	Probs
(4)

�
�
�

�
�

�

�
action	type
�

�
action	param
�

Figure 6.3: The neural network architecture that demonstrates the flow from the observation
vector to action probabilities. The number at each box suggests the input or output shapes

Figure 6.4: The mini-games that focuses on harvesting resources with different map sizes of
4× 4, 6× 6, and 8× 8.

6.3.3 Reward Function

The game environment will give the agent a reward of 10 when a worker has successfully harvested
resources and another 10 when it returns the harvested resources back to the base. Otherwise the
game environment gives a reward of 0.

It’s worth pointing out that, like in many other reinforcement learning problems, rewards can be
very sparse as maps grow and workers get further away from the resources and the base, requiring
thousands of exploration steps before getting a non-zero reward.

6.4 Experimental Study

For the global representation, we selected Advantage Actor-Critic (A2C), one of the most popular
RL algorithms, to evaluate the agents’ performance15. We created the Policy Network and Value
Networks. As shown in Figure 6.3 that demonstrates the forward pass, the observation tensor is
fed into the policy network that produces a dense vector of shape (h · w · na · np), which is split
into 4 different subvectors of logits. Each of those logits is passed into a Categorical Distribution
to gain the probability distribution for sampling values to produce the a combined action vector
a =

[
axt ayt aaction type

t aaction param
t

]
. In addition, the observation vector is also used by the

value network to create a valuation of the current observation.
Given the forward pass, we run the game for a full episode, record the reward rt at each time

Chapter 6: Game Representation 6.4 Experimental Study

50

Table 6.2: The list of experiment parameters and their values.

Parameter Names Parameter Values

Maps 4× 4, 6× 6, 8× 8
Learning Rate of Adam Optimizer 0.0007
Random Seed 1, 2, 3
Episode Length 2,000 time steps
Total Time steps 2,000,000 time steps
w (Local Representation Window Size) 1, 2
γ (Discount Factor) 0.99
c1 (Value Function Coefficient) 0.25
c2 (Entropy Regularization Coefficient) 0.01
ω (Gradient Norm Threshold) 0.5

step t and compute

log πθ(at|st) = log πθ(a
x
t |st)

+ log πθ(a
y
t |st)

+ log πθ(a
action type
t |st)

+ log πθ(a
action param
t |st)

where st is the observation tensor at time step t. In addition, analogously compute the entropy∑
a πθ(a|st) log πθ(a|st) as the sum of entropy for axt , a

y
t , a

action type
t and aaction param

t . After each
episode finishes, we could train the agent based on the following gradient

(Gt − vθ′(st))∇θ log πθ(at|st)︸ ︷︷ ︸
policy gradient

+

c1(Gt − vθ′(st))∇θ′vθ′(st)︸ ︷︷ ︸
value estimation gradient

+

c2
∑
a

πθ(a|st) log πθ(a|st)︸ ︷︷ ︸
entropy regularization

where θ′ and θ are weights for the value network and the policy network, respectively, c1 and c2
are hyperparameters for controlling the contribution of value gradients and entropy regularization
gradients, and Gt is the discounted rewards from step t. A comprehensive list of training parameters
and their values can be found at Table 6.2. For more details on the algorithm, please refer to the
original paper15.

Regarding the local representation, we used a similar Policy Network architecture that produces
a dense vector of shape (na · np). We similarly calculate

log πθ(at|st) = log πθ(a
action type
t |st) + log πθ(a

action param
t |st)

and the entropy
∑

a πθ(a|st) log πθ(a|st) as the sum of entropy for aaction type
t and aaction param

t ; then
use A2C to train the agent.

In this section, we compare the aforementioned approaches on maps of different sizes.

6.4.1 Experimental Setup

We created three maps of size 4 × 4, 6 × 6, and 8 × 8, all of which are shown in the Figure 6.4.
They all have two workers, a block containing 230 resources, a base for the workers to return the
harvested resources, and a dummy enemy base that is useless. Note that it takes a worker 10 time

Chapter 6: Game Representation 6.4 Experimental Study

51

Table 6.3: The list of representations and their performance according to our metrics. The
“-” in tfirst return indicates the agent never returned any resources.

map tfirst harvest tfirst return r

RandomAI 4× 4 51.33 142.67 11.87
Global 4× 4 99.00 167.73 13.13
Local (w = 1) 4× 4 29.87 172.47 67.20
Local (w = 2) 4× 4 45.00 73.73 33.40

RandomAI 6× 6 421.33 797.33 2.00
Global 6× 6 533.33 1931.20 0.07
Local (w = 1) 6× 6 59.20 567.40 3.53
Local (w = 2) 6× 6 62.33 408.73 3.93

RandomAI 8× 8 878.67 1480.67 0.87
Global 8× 8 1464.53 - 0.00
Local (w = 1) 8× 8 167.20 1844.20 0.20
Local (w = 2) 8× 8 89.87 - 0.00

steps to harvest a resource and another 10 time steps to return the resources to the base, excluding
the time steps to move around the map. So in the most efficient harvesting setup as shown in the
4×4 map, where each worker is right next to the base and the resources, the most resources that the
two workers can gather is 2 per 20 frames. In fact, since both representations only accept one action
at each time step, the two workers have to wait until 21 frames for the resources to be returned.
Simple math shows that 2 · 2000/20 = 200 is the most that the two workers can harvest within the
2,000 time steps per episode. A comprehensive list of experimental parameters and their values are
presented in Table 6.2. For values of hyperparameters, we simply used the default values from the
OpenAI’s A2C implementation33.

6.4.2 Experimental Results

Figure 6.5 shows the average reward of runs with different random seeds per episode as a function
of training steps. As shown in the plots, local representation with w = 1 yields the best episode
rewards in all three maps. As mentioned previously, we suspect local representation is performing
better just because the agent doesn’t have to learn to pick a unit as the agent does under the global
representation, i.e., the units are pre-selected under the local representation.

The reason that local representation with w = 2 is performing worse than local representation
with w = 1 seems purely computational since the observation tensor when w = 2 is almost twice
as the size when w = 1. The other notable characteristic is that local representation with w = 2
seems to exhibit more stable performance. Given more computational resources, we think local
representation with w = 2 will eventually become more efficient than local representation with
w = 1 because larger window size means the units are less likely to move to a cell where the base or
resources are outside of its local feature maps (or in simpler terms, the unit moved to a cell that could
not observe the base or resources). In our experiments, the map sizes are generally small and the
position of the base and resources are stationary, so the local representation with w = 1 is probably
enough for the unit to observe sufficient information (and for learning to reach the resources, they
just need to learn to move to the top-left coordinate of the map).

Notably, the performance of both local and global representation suffer when we scale the game
with larger maps. As shown in the Figure 6.4, the larger maps presents even challenging moving
trajectories for the agents since the distance between resources and the base is increased, which means
sparser rewards and larger exploration needed for the agents. Global representation is especially
worse off because the agent still has to learn to select units, navigate, harvest, and return to base in
the larger maps.

As a baseline, we created three metrics to evaluate the performance of agents against the built-
in RandomAI µRTS agent that uniformly selects a valid action, either NOOP, Move, Harvest, or
Return, and a valid parameter depending on the game state. Notice that all actions produced by

Chapter 6: Game Representation 6.4 Experimental Study

52

0 250 k 500 k 750 k 1 M 1.25 M 1.5 M 1.75 M 2 M
0

500

1000

1500

2000 Global Representation
Local Representation with w=1
Local Representation with w=2

4x4 Map

0 250 k 500 k 750 k 1 M 1.25 M 1.5 M 1.75 M 2 M
0

100

200

300
Global Representation
Local Representation with w=1
Local Representation with w=2

6x6 Map

0 250 k 500 k 750 k 1 M 1.25 M 1.5 M 1.75 M 2 M
0

10

20

30

40

50 Global Representation
Local Representation with w=1
Local Representation with w=2

8x8 Map

Figure 6.5: Episode rewards (y axis) as a function of training time steps (x-axis) for the 3
map sizes.

the RandomAI agent are valid since it has the game rules hard-coded, whereas our reinforcement
learning agents have to learn which actions are valid. Thus, the RandomAI agent has an unfair
advantage. A way to level the playing field would be to mask out invalid agents in the output of the
reinforcement learning, and consider the action with highest likelihood only among the valid ones.
However, we decided against giving our agent any domain knowledge beyond the observation and
action representation in this first set of experiments, just to set a baseline.

Let tfirst harvest and tfirst return be the time steps that the agent successfully harvested and return
resources for the first time, respectively, which will give us an idea of how much ”wandering” did
the agent did before harvesting and returning. Then, let r be the number of resources gathered
in total, which will evaluate the agents’ performance as a whole. We ran the trained agents with
different seeds for 5 episodes (10,000 time steps) and calculate the average tfirst harvest, tfirst return,
and r across runs with different seeds. The evaluation result is listed at Table 6.3. As shown, the
trained agents perform significantly better than the RandomAI agent except in the 8×8 map where
all agents perform equally bad.

6.4.3 Visual Behavior of Agents

When using RL to train agents to play games, it is easy to be distracted by the numerical rewards
and various metrics. However, watching the agent play in the game remains the ultimate measure
for agents’ ability. The following paragraphs highlight some interesting behaviors of agents.

In 4× 4 maps, the agent under the local representation almost exhibits optimal behavior where
the two Workers harvest the resources and return them restlessly. The agent under the global
representation, however, seems to only learn to control one Worker. It seems the agent gets stuck in
a local minimum where it believes the maneuver of only one Worker is best for harvesting resources.

In 6 × 6 and 8 × 8 maps, the agent under the local representation struggles with returning the
resources to the base. In fact, the agent tries to harvest another unit of resources even though it
already carries one. The unit moves closer to the resources than to the base, but unfortunately it
has to return the resources before harvesting new ones. It almost seems that the agent learned only
to harvest resources, but has not learned how to return them.

Chapter 6: Game Representation 6.4 Experimental Study

53

6.5 Discussion

In this document, we compared two different observation and action representations in the context of
RTS games: (1) a global representation that feeds the agent an observation of feature maps that are
as large as the game map itself, and require the agent to learn to locate unit it is wants to issue actions
to and predict the intended action type and parameter; and (2) a local representation that feeds the
agent an observation of local feature maps that are the feature maps of some distance away from
the point of view of a selected unit, and require the agent to learn which action type and parameter
to issue for the said unit. We train agents on maps that focus on harvesting resources, establish
some objective metrics to evaluate the agents’ performance and show that the local representation
generally outperforms the global representation. This advantage, however, does not necessarily hold
in larger maps, where the exploration and sparse rewards become a huge problem.

Chapter 6: Game Representation 6.5 Discussion

54

Chapter 7: Invalid Action Masking

In the last chapter, we built the Gym-µRTS testbed for us to experiment and study efficient DRL
techniques. We soon realized the agent in the last chapter performed poorly because the agent’s
action space is too large. For example, in an 8× 8 map with 2 worker units, the chance of the agent
choosing a valid worker unit is 2/(8 ∗ 8) = 3.12%, so for 97% of the time the agent will be issuing
invalid actions. Upon reviewing related work, we found recent work to employ a technique called
invalid action masking107, which can help avoid sampling invalid actions. However, invalid action
masking was an anecdotal technique mentioned in previous literature with no theoretical analysis
or empirical ablation study. In this chapter, we take a deep dive into this technique and help the
research community understand its mechanism and effect better. The work of this chapter is based
on the following publication:

• Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy
gradient algorithms. volume 35, May 2022. doi: 10.32473/flairs.v35i.130584. URL https:

//journals.flvc.org/FLAIRS/article/view/130584

7.1 Motivation

Deep Reinforcement Learning (DRL) algorithms have yielded state-of-the-art game-playing agents
in challenging domains such as Real-time Strategy (RTS) games27;107 and Multiplayer Online Battle
Arena (MOBA) games66;117. Because these games have complicated rules, the valid discrete action
spaces of different states usually have different sizes. That is, one state might have 5 valid actions
and another state might have 7 valid actions. To formulate these games as a standard reinforcement
learning problem with a singular action set, previous work combines these discrete action spaces to
a full discrete action space that contains available actions of all states66;107;117. Although such a full
discrete action space makes it easier to apply DRL algorithms, one issue is that an action sampled
from this full discrete action space could be invalid for some game states, and this action will have
to be discarded.

To make matters worse, some games have extremely large full discrete action spaces and an action
sampled will typically be invalid. As an example, the full discrete action space of Dota 2 has a size
of 1,837,08066, and an action sampled might be to buy an item, which can be valid in some game
states but will become invalid when there is not enough gold. To avoid repeatedly sampling invalid
actions in full discrete action spaces, recent work applies policy gradient algorithms in conjunction
with a technique known as invalid action masking, which “masks out” invalid actions and then just
samples from those actions that are valid66;107;117. To the best of our knowledge, however, the
theoretical foundations of invalid action masking have not been studied and its empirical effect is
under-investigated. In this paper, we take a closer look at invalid action masking in the context of
games, pointing out the gradient produced by invalid action masking corresponds to a valid policy
gradient. More interestingly, we show that in fact, invalid action masking can be seen as applying a
state-dependent differentiable function during the calculation of the action probability distribution,
to produce a behavior policy. Next, we design experiments to compare the performance of invalid
action masking versus invalid action penalty, which is a common approach that gives negative rewards
for invalid actions so that the agent learns to maximize reward by not executing any invalid actions.
We empirically show that, when the space of invalid actions grows, invalid action masking scales
well and the agent solves our desired task while invalid action penalty struggles to explore even the
very first reward. Then, we design experiments to answer two questions: (1) What happens if we
remove the invalid action mask once the agent was trained with the mask? (2) What is the agent’s
performance when we implement the invalid action masking naively by sampling the action from the
masked action probability distribution but updating the policy gradient using the unmasked action

https://journals.flvc.org/FLAIRS/article/view/130584
https://journals.flvc.org/FLAIRS/article/view/130584

55

Figure 7.1: A screenshot of µRTS. Square units are “bases” (light grey, that can produce work-
ers), “barracks” (dark grey, that can produce military units), and “resources mines” (green, from
where workers can extract resources to produce more units), the circular units are “workers”
(small, dark grey) and military units (large, yellow or light blue), and on the right is the 10×10
map we used to train agents to harvest resources. The agents could control units at the top
left, and the units in the bottom left will remain stationary.

probability distribution? Finally, we made our source code available at GitHub for the purpose of
reproducibility1.

7.2 Background

There have been other approaches to deal with invalid actions. Dulac-Arnold, Evans, et al.118

suggest embedding discrete action spaces into a continuous action space, using nearest-neighbor
methods to locate the nearest valid actions. In the field of games with natural language, others
propose to train an Action Elimination Network (AEN)119 to reduce the action set.

The purpose of avoiding executing invalid actions arguably is to boost exploration efficiency.
Some less related work achieves this purpose by reducing the full discrete action space to a simpler
action space. Kanervisto, et al.120 describes this kind of work as “action space shaping”, which
typically involves 1) action removals (e.g. Minecraft RL environment removes non-useful actions
such as “sneak”121), and 2) discretization of continuous action space (e.g. the famous CartPole-v0
environment discretize the continuous forces to be applied to the cart50). Although a well-shaped
action space could help the agent efficiently explore and learn a useful policy, action space shaping
is shown to be potentially difficult to tune and sometimes detrimental in helping the agent solve the
desired tasks118.

Lastly, Kanervisto, et al.120 and Ye, et al.117 provide ablation studies to show invalid action
masking could be important to the performance of agents, but they do not study the empirical effect
of invalid action masking as the space of invalid action grows, which is addressed in this paper.

7.3 Invalid Action Masking

Invalid action masking is a common technique implemented to avoid repeatedly generating invalid
actions in large discrete action spaces66;107;117. To the best of our knowledge, there is no literature
providing detailed descriptions of the implementation of invalid action masking. Existing work66;107

seems to treat invalid action masking as an auxiliary detail, usually describing it using only a few
sentences. Additionally, there is no literature providing theoretical justification to explain why it
works with policy gradient algorithms. In this section, we examine how invalid action masking is
implemented and prove it indeed corresponds to valid policy gradient updates14. More interestingly,

1https://github.com/vwxyzjn/invalid-action-masking

Chapter 7: Invalid Action Masking 7.2 Background

https://github.com/vwxyzjn/invalid-action-masking

56

we show it works by applying a state-dependent differentiable function during the calculation of
action probability distribution.

First, let us see how a discrete action is typically generated through policy gradient algorithms.
Most policy gradient algorithms employ a neural network to represent the policy, which usually
outputs unnormalized scores (logits) and then converts them into an action probability distribution
using a softmax operation or equivalent, which is the framework we will assume in the rest of the
paper. For illustration purposes, consider an MDP with the action set A = {a0, a1, a2, a3} and
S = {s0, s1}, where the MDP reaches the terminal state s1 immediately after an action is taken in
the initial state s0 and the reward is always +1. Further, consider a policy πθ parameterized by
θ = [l0, l1, l2, l3] = [1.0, 1.0, 1.0, 1.0] that, for the sake of this example, directly produces θ as the
output logits. Then in s0 we have:

πθ(·|s0) = [πθ(a0|s0), πθ(a1|s0), πθ(a2|s0), πθ(a3|s0)]
= softmax([l0, l1, l2, l3]) (7.1)

= [0.25, 0.25, 0.25, 0.25],

where πθ(ai|s0) =
exp(li)∑
j exp(lj)

At this point, regular policy gradient algorithms will sample an action from πθ(·|s0). Suppose a0 is
sampled from πθ(·|s0), and the policy gradient can be calculated as follows:

gpolicy = Eτ

[
∇θ

T−1∑
t=0

log πθ(at|st)Gt

]
= ∇θ log πθ(a0|s0)G0

= [0.75,−0.25,−0.25,−0.25]

(∇θ log softmax(θ)j)i =

(1− exp(lj)∑
j exp(lj)

) if i = j
− exp(lj)∑

j exp(lj)
otherwise

Now suppose a2 is invalid for state s0, and the only valid actions are a0, a1, a3. Invalid action
masking helps to avoid sampling invalid actions by “masking out” the logits corresponding to the
invalid actions. This is usually accomplished by replacing the logits of the actions to be masked by
a large negative number M (e.g. M = −1× 108). Let us use mask : R → R to denote this masking
process, and we can calculate the re-normalized probability distribution π′

θ(·|s0) as the following:

π′
θ(·|s0) = softmax(mask([l0, l1, l2, l3])) (7.2)

= softmax([l0, l1,M, l3]) (7.3)

= [π′
θ(a0|s0), π′

θ(a1|s0), ϵ, π′
θ(a3|s0)] (7.4)

= [0.33, 0.33, 0.0000, 0.33]

where ϵ is the resulting probability of the masked invalid action, which should be a small number.
If M is chosen to be sufficiently negative, the probability of choosing the masked invalid action a2
will be virtually zero. After finishing the episode, the policy is updated according to the following
gradient, which we refer to as the invalid action policy gradient.

ginvalid action policy = Eτ

[
∇θ

T−1∑
t=0

log π′
θ(at|st)Gt

]
(7.5)

= ∇θ log π
′
θ(a0|s0)G0 (7.6)

= [0.67,−0.33, 0.0000,−0.33]

This example highlights that invalid action masking appears to do more than just “renormalizing

Chapter 7: Invalid Action Masking 7.3 Invalid Action Masking

57

Table 7.1: Observation features and action components.

Observation Features Planes Description

Hit Points 5 0, 1, 2, 3, ≥ 4
Resources 5 0, 1, 2, 3, ≥ 4
Owner 3 player 1, -, player 2
Unit Types 8 -, resource, base, barrack, worker, light, heavy, ranged
Current Action 6 -, move, harvest, return, produce, attack

Action Components Range Description

Source Unit [0, h× w − 1] the location of the unit selected to perform an action
Action Type [0, 5] NOOP, move, harvest, return, produce, attack
Move Parameter [0, 3] north, east, south, west
Harvest Parameter [0, 3] north, east, south, west
Return Parameter [0, 3] north, east, south, west
Produce Direction Parameter [0, 3] north, east, south, west
Produce Type Parameter [0, 6] resource, base, barrack, worker, light, heavy, ranged
Attack Target Unit [0, h× w − 1] the location of unit that will be attacked

the probability distribution”; it in fact makes the gradient corresponding to the logits of the invalid
action to zero.

7.3.1 Masking Still Produces a Valid Policy Gradient

The action selection process is affected by a process that seems external to πθ that calculates the
mask. It is therefore natural to wonder how does the policy gradient theorem14 apply. As a matter
of fact, our analysis shows that the process of invalid action masking can be considered as a state-
dependent differentiable function applied for the calculation of π′

θ, and therefore ginvalid action policy

can be considered as a policy gradient update for π′
θ.

Proposition 1. ginvalid action policy is the policy gradient of policy π′
θ.

Proof. Let s ∈ S to be arbitrary and consider the process of invalid action masking as a differentiable
function mask to be applied to the logits l(s) outputted by policy πθ given state s. Then we have:

π′
θ(·|s) = softmax(mask(l(s)))

mask(l(s))i =

{
li if ai is valid in s

M otherwise

Clearly, mask is either an identity function or a constant function for elements in the logits. Since
these two kinds of functions are differentiable, π′

θ is differentiable to its parameters θ. That is,
∂π′

θ(a|s)
∂θ exists for all a ∈ A, s ∈ S, which satisfies the assumption of policy gradient theorem14.

Hence, ginvalid action policy is the policy gradient of policy π′
θ.

Note that mask is not a piece-wise linear function. If we plot mask, it is either an identity
function or a constant function, depending on the state s, going from −∞ to +∞. We therefore call
mask a state-dependent differentiable function. That is, given a vector x and two states s, s′ with
different number of invalid actions available in these states, mask(s, x) ̸= mask(s′, x).

7.4 Experimental Study

In the remainder of this paper, we provide a series of empirical results showing the practical impli-
cations of invalid action masking.

Chapter 7: Invalid Action Masking 7.4 Experimental Study

58

Invalid action masking

Masking removed

Invalid action penalty, rinvalid = 0

Naive invalid action masking

Invalid action penalty, rinvalid = −0.1

Invalid action penalty, rinvalid = −0.01

Invalid action penalty, rinvalid = −1

0

20

40

60

80

E
pi

so
di

c
R

et
ur

n

(a) 4× 4 Map

−10

0

10

20

30

40

(b) 10× 10 Map

0

10

20

30

40

(c) 16× 16 Map

0

10

20

30

40

(d) 24× 24 Map

0 1 2 3 4 5
Time Steps ×105

0.00

0.02

0.04

0.06

K
L

D
iv

er
ge

nc
e

(e) 4× 4 Map

0 1 2 3 4 5
Time Steps ×105

0.00

0.02

0.04

0.06

(f) 10× 10 Map

0 1 2 3 4 5
Time Steps ×105

0.00

0.02

0.04

0.06

(g) 16× 16 Map

0 1 2 3 4 5
Time Steps ×105

0.00

0.02

0.04

0.06

(h) 24× 24 Map

Figure 7.2: The first row shows the episodic return over the time steps, and the second row
shows the Kullback–Leibler (KL) divergence between the target and current policy of PPO over
the time steps. The shaded area represents one standard deviation of the data over 4 random
seeds. Curves are exponentially smoothed with a weight of 0.9 for readability.

7.4.1 Evaluation Environment

We use µRTS2 as our testbed, which is a minimalistic RTS game maintaining the core features
that make RTS games challenging from an AI point of view: simultaneous and durative actions,
large branching factors, and real-time decision-making. A screenshot of the game can be found in
Figure 7.1. It is the perfect testbed for our experiments because the action space in µRTS grows
combinatorially and so does the number of invalid actions that could be generated by the DRL
agent. We now present the technical details of the environment for our experiments.

• Observation Space. Given a map of size h×w, the observation is a tensor of shape (h,w, nf),
where nf is a number of feature planes that have binary values. The observation space
used in this paper uses 27 feature planes as shown in Table 7.1, similar to previous work
in µRTS31;116;122. A feature plane can be thought of as a concatenation of multiple one-hot
encoded features. As an example, if there is a worker with hit points equal to 1, not carrying
any resources, the owner being Player 1, and currently not executing any actions, then the
one-hot encoding features will look like the following:

[0, 1, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0]

The 27 values of each feature plane for the position in the map of such worker will thus be the
concatenation of the arrays above.

• Action Space. Given a map of size h × w, the action is an 8-dimensional vector of discrete
values as specified in Table 7.1. The action space is designed similarly to the action space
formulation by Hausknecht, et al.,123. The first component of the action vector represents
the unit in the map to issue actions to, the second is the action type, and the rest of the
components represent the different parameters different action types can take. Depending on
which action type is selected, the game engine will use the corresponding parameters to execute
the action.

2https://github.com/santiontanon/microrts

Chapter 7: Invalid Action Masking 7.4 Experimental Study

https://github.com/santiontanon/microrts

59

Table 7.2: Results averaged over 4 random seeds. The symbol “-” means “not applicable”.
Higher is better for repisode and lower is better for anull, abusy, aowner, tsolve, and tfirst.

Strategies Map size rinvalid repisode anull abusy aowner tsolve tfirst

Invalid action penalty 4× 4 -1.00 0.00 0.00 0.00 0.00 - 0.53%
-0.10 30.00 0.02 0.00 0.00 50.94% 0.52%
-0.01 40.00 0.02 0.00 0.00 14.32% 0.51%
0.00 30.25 2.17 0.22 2.70 36.00% 0.60%

10× 10 -1.00 0.00 0.00 0.00 0.00 - 3.43%
-0.10 0.00 0.00 0.00 0.00 - 2.18%
-0.01 0.50 0.00 0.00 0.00 - 1.57%
0.00 0.25 90.10 0.00 102.95 - 3.41%

16× 16 -1.00 0.25 0.00 0.00 0.00 - 0.44%
-0.10 0.75 0.00 0.00 0.00 - 0.44%
-0.01 1.00 0.02 0.00 0.00 - 0.44%
0.00 1.00 184.68 0.00 2.53 - 0.40%

24× 24 -1.00 0.00 49.72 0.00 0.02 - 1.40%
-0.10 0.25 0.00 0.00 0.00 - 1.40%
-0.01 0.50 0.00 0.00 0.00 - 1.92%
0.00 0.50 197.68 0.00 0.90 - 1.83%

Invalid action masking 04x04 - 40.00 - - - 8.67% 0.07%
10x10 - 40.00 - - - 11.13% 0.05%
16x16 - 40.00 - - - 11.47% 0.08%
24x24 - 40.00 - - - 18.38% 0.07%

Masking removed 04x04 - 33.53 63.57 0.00 17.57 76.42% -
10x10 - 25.93 128.76 0.00 7.75 94.15% -
16x16 - 17.32 165.12 0.00 0.52 - -
24x24 - 17.37 150.06 0.00 0.94 - -

Naive invalid action 4× 4 - 59.61 - - - 11.74% 0.07%
masking 10× 10 - 40.00 - - - 13.97% 0.05%

16× 16 - 40.00 - - - 30.59% 0.10%
24× 24 - 38.50 - - - 49.14% 0.07%

• Rewards. We are evaluating our agents on the simple task of harvesting resources as fast as
they can for Player 1 who controls units at the top left of the map. A +1 reward is given when
a worker harvests a resource, and another +1 is received once the worker returns the resource
to a base.

• Termination Condition. We set the maximum game length to be 200 time steps, but the
game could be terminated earlier if all the resources in the map are harvested first.

Notice that the space of invalid actions becomes significantly larger in larger maps. This is
because the range of the first and last discrete values in the action space, corresponding to Source
Unit and Attack Target Unit selection, grows linearly with the size of the map. To illustrate, in
our experiments, there are usually only two units that can be selected as the Source Unit (the base
and the worker). Although it is possible to produce more units or buildings to be selected, the
production behavior has no contribution to reward and therefore is generally not learned by the
agent. Note the range of Source Unit is 4 × 4 = 16 and 24 × 24 = 576, in maps of size 4 × 4 and
24× 24, respectively. Selecting a valid Source Unit at random has a probability of 2/16 = 0.125 in
the 4× 4 map and 2/576 = 0.0034 in the 24× 24 map. With such action space, we can examine the
scalability of invalid action masking.

7.4.2 Training Algorithm

We use Proximal Policy Optimization16 as the DRL algorithm to train our agents.

Chapter 7: Invalid Action Masking 7.4 Experimental Study

60

7.4.3 Strategies to Handle Invalid Actions

To examine the empirical importance of invalid action masking, we compare the following four
strategies to handle invalid actions.

1. Invalid action penalty. Every time the agent issues an invalid action, the game environment
adds a non-positive reward rinvalid ≤ 0 to the reward produced by the current time step. This
technique is standard in previous work124. We experiment with rinvalid ∈ {0,−0.01,−0.1,−1},
respectively, to study the effect of the different scales on the negative reward.

2. Invalid action masking. At each time step t, the agent receives a mask on the Source Unit
and Attack Target Unit features such that only valid units can be selected and targeted. Note
that in our experiments, invalid actions still could be sampled because the agent could still
select incorrect parameters for the current action type. We didn’t provide a feature-complete
invalid action mask for simplicity, as the mask on Source Unit and Attack Target Unit already
significantly reduce the action space.

3. Naive invalid action masking. At each time step t, the agent receives the same mask on
the Source Unit and Attack Target Unit as described for invalid action masking. The action
shall still be sampled according to the re-normalized probability calculated in Equation 7.4,
which ensures no invalid actions could be sampled, but the gradient is updated according to
the probability calculated in Equation 7.1. We call this implementation naive invalid action
masking because its gradient does not replace the gradient of the logits corresponds to invalid
actions with zero.

4. Masking removed. At each time step t, the agent receives the same mask on the Source
Unit and Attack Target Unit as described for invalid action masking, and trains in the same
way as the agent trained under invalid action masking. However, we then evaluate the agent
without providing the mask. In other words, in this scenario, we evaluate what happens if we
train with a mask, but then perform without it.

We evaluate the agent’s performance in maps of sizes 4 × 4, 10 × 10, 16 × 16, and 24 × 24. All
maps have one base and one worker for each player, and each worker is located near the resources.

7.4.4 Evaluation Metrics

We used the following metrics to measure the performance of the agents in our experiments: repisode
is the average episodic return over the last 10 episodes. anull is the average number of actions that
select a Source Unit that is not valid over the last 10 episodes. abusyis the average number of actions
that select a Source Unit that is already busy executing other actions over the last 10 episodes.
aowner is the average number of actions that select a Source Unit that does not belong to Player 1
over the last 10 episodes. tsolve is the percentage of total training time steps that it takes for the
agents’ moving average episodic return of the last 10 episodes to exceed 40. tfirst is the percentage
of the total training time step that it takes for the agent to receive the first positive reward.

7.4.5 Evaluation Results

We report the results in Figure 7.2 and in Table 7.2. Here we present a list of important observations:
Invalid action masking scales well. Invalid action masking is shown to scale well as the

number of invalid actions increases; tsolve is roughly 12% and very similar across different map sizes.
In addition, the tfirst for invalid action masking is not only the lowest across all experiments (only
taking about 0.05 − 0.08% of the total time steps), but also consistent against different map sizes.
This would mean the agent was able to find the first reward very quickly regardless of the map sizes.

Invalid action penalty does not scale. Invalid action penalty is able to achieve good results in
4×4 maps, but it does not scale to larger maps. As the space of invalid action gets larger, sometimes
it struggles to even find the very first reward. E.g. in the 10× 10 map, agents trained with invalid
action penalty with rinvalid = −0.01 spent 3.43% of the entire training time just discovering the first

Chapter 7: Invalid Action Masking 7.4 Experimental Study

61

reward, while agents trained with invalid action masking take roughly 0.06% of the time in all maps.
In addition, the hyper-parameter rinvalid can be difficult to tune. Although having a negative rinvalid
did encourage the agents not to execute any invalid actions (e.g. anull, abusy, aowner are usually very
close to zero for these agents), setting rinvalid = −1 seems to have an adverse effect of discouraging
exploration by the agent, therefore achieving consistently the worst performance across maps.

KL divergence explodes for naive invalid action masking. According to Table 7.2, the
repisode of naive invalid action masking is the best across almost all maps. In the 4 × 4 map, the
agent trained with naive invalid action masking even learns to travel to the other side of the map
to harvest additional resources. However, naive invalid action masking has two main issues: 1) As
shown in the second row of Figure 7.2, the average Kullback–Leibler (KL) divergence125 between
the target and current policy of PPO for naive invalid action masking is significantly higher than
that of any other experiments. Since the policy changes so drastically between policy updates, the
performance of naive invalid action masking might suffer when dealing with more challenging tasks.
2) As shown in Table 7.2, the tsolve of naive invalid action masking is more volatile and sensitive
to the map sizes. In the 24 × 24 map, for example, the agents trained with naive invalid action
masking take 49.14% of the entire training time to converge. In comparison, agents trained with
invalid action masking exhibit a consistent tsolve ≈ 12% in all maps.

Masking removed still behaves to some extent. As shown in Figures 7.2b, masking removed
is still able to perform well to a certain degree. As the map size gets larger, its performance degrades
and starts to execute more invalid actions by, most prominently, selecting an invalid Source Unit.
Nevertheless, its performance is significantly better than that of the agents trained with invalid
action penalty even though they are evaluated without the use of invalid action masking. This
shows that the agents trained with invalid action masking can, to some extent, still produce useful
behavior when the invalid action masking can no longer be provided.

7.5 Conclusions

In this paper, we examined the technique of invalid action masking, which is a technique commonly
implemented in policy gradient algorithms to avoid executing invalid actions. Our work shows that:
1) the gradient produced by invalid action masking is a valid policy gradient, 2) it works by applying
a state-dependent differentiable function during the calculation of action probability distribution, 3)
invalid action masking empirically scales well as the space of invalid action gets larger; in comparison,
the common technique of giving a negative reward when an invalid action is issued fails to scale,
sometimes struggling to find even the first reward in our environment, 4) the agent trained with
invalid action masking was still able to produce useful behaviors with masking removed.

Given the clear effectiveness of invalid action masking demonstrated in this paper, we believe the
community would benefit from wider adoption of this technique in practice. Invalid action masking
empowers the agents to learn more efficiently, and we ultimately hope that it will accelerate research
in applying DRL to games with large and complex discrete action spaces.

Chapter 7: Invalid Action Masking 7.5 Conclusions

62

Chapter 8: Action Guidance

The last chapter explores the technique that helps reduce the search space of RTS games, which is
generally useful. In this chapter, we investigate techniques that help us circumvent the downsides
of using shaped rewards in Gym-µRTS. Namely, the agent may learn to overfit the shaped rewards
instead of the true objective — this means the agent may get a lot of shaped rewards by harvesting
resources or producing workers instead of trying to win the game as soon as possible. We propose a
technique that we call action guidance that successfully trains agents to eventually optimize the true
objective in games with sparse rewards while maintaining most of the sample efficiency that comes
with reward shaping. We evaluate our approach in Gym-µRTS to demonstrate its effectiveness. The
work of this chapter is based on the following workshop article:

• Shengyi Huang and Santiago Ontañón. Action guidance: Getting the best of sparse rewards
and shaped rewards for real-time strategy games. AIIDE Workshop on Artificial Intelligence
for Strategy Games, abs/2010.03956, 2020. URL https://arxiv.org/abs/2010.03956

8.1 Motivation

Training agents using Reinforcement Learning with sparse rewards is often difficult126. First, due
to the sparsity of the reward, the agent often spends the majority of the training time doing inef-
ficient exploration and sometimes not even reaching the first sparse reward during the entirety of
its training. Second, even if the agents have successfully retrieved some sparse rewards, performing
proper credit assignment is challenging among complex sequences of actions that have led to theses
sparse rewards. Reward shaping127 is a widely-used technique designed to mitigate this problem. It
works by providing intermediate rewards that lead the agent towards the sparse rewards, which are
the true objective. For example, the sparse reward for a game of Chess is naturally +1 for winning,
-1 for losing, and 0 for drawing, while a possible shaped reward might be +1 for every enemy piece
the agent takes. One of the critical drawbacks for reward shaping is that the agent sometimes learns
to optimize for the shaped reward instead of the real objective. Using the Chess example, the agent
might learn to take as many enemy pieces as possible while still losing the game. A good shaped
reward achieves a nice balance between letting the agent find the sparse reward and being too shaped
(so the agent learns to just maximize the shaped reward), but this balance can be difficult to find.

In this paper, we present a novel technique called action guidance that successfully trains the
agent to eventually optimize over sparse rewards while maintaining most of the sample efficiency
that comes with reward shaping. It works by constructing a main policy that only learns from the
sparse reward function RM and some auxiliary policies that learn from the shaped reward function
RA1 , RA2 , . . . , RAn . During training, we use the same rollouts to train the main and auxiliary policies
and initially set a high-probability of the main policy to take action guidance from the auxiliary
policies, that is, the main policy will execute actions sampled from the auxiliary policies. Then the
main policy and auxiliary policies are updated via off-policy policy gradient. As the training goes
on, the main policy will get more independent and execute more actions sampled from its own policy.
Auxiliary policies learn from shaped rewards and therefore make the training sample-efficient, while
the main policy learns from the original sparse reward and therefore makes sure that the agents
will eventually optimize over the true objective. We can see action guidance as combining reward
shaping to train auxiliary policies interlieaved with a sort of imitation learning to guide the main
policy from these auxiliary policies.

We examine action guidance in the context of a real-time strategy (RTS) game simulator called
µRTS for three sparse rewards tasks of varying difficulty. For each task, we compare the performance
of training agents with the sparse reward function RM, a shaped reward function RA1 , and action
guidance with a singular auxiliary policy learning from RA1 . The main highlights are:

https://arxiv.org/abs/2010.03956

63

Action guidance is sample-efficient. Since the auxiliary policy learns from RA1 and the main
policy takes action guidance from the auxiliary policy during the initial stage of training, the main
policy is more likely to discover the first sparse reward more quickly and learn more efficiently.
Empirically, action guidance reaches almost the same level of sample efficiency as reward shaping in
all of the three tasks tested.

The true objective is being optimized. During the course of training, the main policy has
never seen the shaped rewards. This ensures that the main policy, which is the agent we are really
interested in, is always optimizing against the true objective and is less biased by the shaped rewards.
As an example, Figure 8.1 shows that the main policy trained with action guidance eventually learns
to win the game as fast as possible, even though it has only learned from the match outcome reward
(+1 for winning, -1 for losing, and 0 for drawing). In contrast, the agents trained with reward
shaping learn more diverse sets of behaviors which result in high shaped reward.

To support further research in this field, we make our source code available at GitHub1, as well
as all the metrics, logs, and recorded videos2.

8.2 Background

In this section, we briefly summarize the popular techniques proposed to address the challenge of
sparse rewards.

Reward Shaping. Reward shaping is a common technique where the human designer uses
domain knowledge to define additional intermediate rewards for the agents. Ng et al. 127 show that
a slightly more restricted form of state-based reward shaping has better theoretical properties for
preserving the optimal policy.

Transfer and Curriculum Learning. Sometimes learning the target tasks with sparse rewards
is too challenging, and it is more preferable to learn some easier tasks first. Transfer learning
leverages this idea and trains agents with some easier source tasks and then later transfer the
knowledge through value function128 or reward shaping129. Curriculum learning further extends
transfer learning by automatically designing and choosing a full sequences of source tasks (i.e. a
curriculum)130.

Imitation Learning. Alternatively, it is possible to directly provide examples of human demon-
stration or expert replay for the agents to mimic via Behavior Cloning (BC)131, which uses supervised
learning to learn a policy given the state-action pairs from expert replays. Alternatively, Inverse
Reinforcement Learning (IRL)132 recovers a reward function from expert demonstrations to be used
to train agents.

Curiosity-driven Learning. Curiosity driven learning seeks to design intrinsic reward func-
tions133 using metrics such as prediction errors134 and “visit counts”135;136. These intrinsic rewards
encourage the agents to explore unseen states.

Goal-oriented Learning. In certain tasks, it is possible to describe a goal state and use it
in conjunction with the current state as input137. Hindsight experience replay (HER)138 develops
better utilization of existing data in experience replay by replaying each episode with different goals.
HER is shown to be an effective technique in sparse rewards tasks.

Hierarchical Reinforcement Learning (HRL). If the target task is difficult to learn directly,
it is also possible to hierarchically structure the task using experts’ knowledge and train hierarchical
agents, which generally involves a main policy that learns abstract goals, time, and actions, as well
as auxiliary policies that learn primitive actions and specific goals124. HRL is especially popular in
RTS games with combinatorial action spaces139;140.

The most closely related work is perhaps Scheduled Auxiliary Control (SAC-X)141, which is an
HRL algorithm that trains auxiliary policies to perform primitive actions with shaped rewards and
a main policy to schedule the use of auxiliary policies with sparse rewards. However, our approach
differs in the treatment of the main policy. Instead of learning to schedule auxiliary policies, our

1https://github.com/anonymous-research-code/action-guidance
2Blinded for peer review

Chapter 8: Action Guidance 8.2 Background

https://github.com/anonymous-research-code/action-guidance

64

(a) shaped reward
(https://youtu.be/UM88KyBLQzM)

(b) action guidance
(https://youtu.be/arsDaIq4B38)

Figure 8.1: The screenshot shows the typical learned behavior of agents in the task of De-
featRandomEnemy. (a) shows that an agent trained with some shaped reward function RA1

learns many helpful behaviors such as building workers (grey circles), combat units (blue cir-
cles), and barracks (grey square) or using owned units (with red boarder) to attack enemy units
(with blue border), but does not learn to win as fast as possible (i.e. it still does not win at
internal time step t = 6000). In contrast, (b) shows an agent trained with action guidance
optimizes over the match outcome and learns to win as fast as possible (i.e. about to win the
game at t = 440), with its main policy learning from the match outcome reward function RM
and a singular auxiliary policy learning from the same shaped reward function RA1 . Click on
the link below figures to see the full videos of trained agents.

main policy learns to act in the entire action space by taking action guidance from the auxiliary
policies. There are two intuitive benefits to our approach since our main policy learns in the full
action space. First, during policy evaluation our main policy does not have to commit to a particular
auxiliary policy to perform actions for a fixed number of time steps like it is usually done in SAC-
X. Second, learning in the full action space means the main policy will less likely suffer from the
definition of hand-crafted sub-tasks, which could be incomplete or biased.

8.3 Action Guidance

The key idea behind action guidance is to create a main policy that trains on the sparse rewards,
and creating some auxiliary policies that are trained on shaped rewards. During the initial stages of
training, the main policy has a high probability to take action guidance from the auxiliary policies,
that is, the main policy can execute actions sampled from the auxiliary policies, rather than from its
own policy. As the training goes on, this probability decreases, and the main policy executes more
actions sampled from its own policy. During training, the main and auxiliary policies are updated
via off-policy policy gradient. Our use of auxiliary policies makes the training sample-efficient, and
our use of the main policy, who only sees its own sparse reward, makes sure that the agent will
eventually optimize over the true objective of sparse rewards. In a way, action guidance can be seen
as training agents using shaped rewards, while having the main policy learn by imitating from them.

Specifically, let us defineM as the MDP that the main policy learns from andA = {A1,A2, ...,Ak}
be a set of auxiliary MDPs that the auxiliary policies learn from. In our constructions, M and A
share the same state, observation, and action space. However, the reward function for M is RM,

Chapter 8: Action Guidance 8.3 Action Guidance

https://youtu.be/UM88KyBLQzM
https://youtu.be/arsDaIq4B38

65

which is the sparse reward function, and reward functions for A are RA1 , ..., RAk
, which are the

shaped reward functions. For each of these MDPs E ∈ S = {M}∪A above, let us initialize a policy
πθE parameterized by parameters θE , respectively. Furthermore, let us use πS = {πθE |E ∈ S} to
denote the set of these initialized policies.

At each timestep t, let us use some exploration strategy S that selects a policy πb ∈ πS to sample
an action at given st. At the end of the episode, each policy πθ ∈ πS can be updated via its off-policy
policy gradient142;143:

Eτ∼πθb

[(
T−1∏
t=0

πθ (at|st)
πθb (at|st)

)
T−1∑
t=0

∇θ log πθ (at|st)A(τ, V, t)

]
(8.1)

When πθ = πθb , the gradient in Equation 8.1 means on-policy policy gradient update for πθ. Oth-
erwise, the objective means off-policy policy gradient update for πθ.

8.3.1 Practical Algorithm

The gradient in Equation 8.1 is unbiased, but its product of importance sampling ratio
(∏T−1

t=0
πθ(at|st)
πθb

(at|st)

)
is known to cause high variance64. In practice, we clip the gradient the same way as Proximal Policy
Gradient (PPO)16:

LCLIP (θ) = Eτ∼πθb

[
T−1∑
t=0

[∇θmin (ρt(θ)A(τ, V, t), clip (ρt(θ), ε)A(τ, V, t))]

]
(8.2)

ρt(θ) =
πθ (at|st)
πθb (at|st)

, clip (ρt(θ), ε) =


1− ε if ρt(θ) < 1− ε

1 + ε if ρt(θ) > 1 + ε

ρt(θ) otherwise

During the optimization phase, the agent also learns the value function and maximizes the policy’s
entropy. We therefore optimize the following joint objective for each πθ ∈ πS :

LCLIP (θ) = LCLIP (θ)− c1L
V F (θ) + c2S[πθb], (8.3)

where c1, c2 are coefficients, S is an entropy bonus, and LV F is the squared error loss for the value
function associated with πθ as done by16. Although action guidance can be configured to leverage
multiple auxiliary policies that learn diversified reward functions, we only use one auxiliary policy
for the simplicity of experiments. In addition, we use ϵ-greedy as the exploration strategy S for
determining the behavior policy. That is, at each timestep t, the behavior policy is selected to be
πθM with probability 1− ϵ and πθD for D ∈ A with probability ϵ (note that is ϵ is different from the
clipping coefficient ε of PPO). Additionally, ϵ is set to be a constant 0.95 at start for some period of
time steps (e.g. 800,000), which we refer to as the shift period (the time it takes to start “shifting”
focus away from the auxiliary policies), then it is set to linearly decay to ϵend for some period of
time steps (e.g. 1,000,000), which we refer to as the adaptation period (the time it takes for the
main policy to fully “adapt” and become more independent).

8.3.2 Positive Learning Optimization

During our initial experiments, we found the main policy sometimes did not learn useful policies.
Our hypothesis is that this was because the main policy is updated with too many trajectories with
zero reward. Doing a large quantities of updates of these zero-reward trajectories actually causes the
policy to converge prematurely, which is manifested by having low entropy in the action probability
distribution.

To mitigate this issue of having too many zero-reward trajectories, we use a preliminary code-
level optimization called Positive Learning Optimization (PLO). After collecting the rollouts, PLO
works by skipping the gradient update for πθE ∈ πS and its value function if the rollouts contains no

Chapter 8: Action Guidance 8.3 Action Guidance

66

reward according to RE . Intuitively, PLO makes sure that the main policy learns from meaningful
experience that is associated with positive rewards. To confirm its effectiveness, we provide an
ablation study of PLO in the experiment section.

8.4 Experimental Study

We use µRTS3 as our testbed, which is a minimalistic RTS game maintaining the core features that
make RTS games challenging from an AI point of view: simultaneous and durative actions, large
branching factors and real-time decision making. To interface with µRTS, we use gym-microrts4 36

to conduct our experiments. The details of gym-microrts as a RL interface can be found at Ap-
pendix 9.4.

8.4.1 Tasks Description

We examine the three following sparse reward tasks with a range of difficulties. For each task, we
compare the performance of training agents with the sparse reward function RM, a shaped reward
function RA1 , and action guidance with a single auxiliary policy learning from RA1 . Here are the
descriptions of these environments and their reward functions.

1. LearnToAttack: In this task, the agent’s objective is to learn move to the other side of the
map where the enemy units live and start attacking them. Its RM gives a +1 reward for each
valid attack action the agent issues. This is of sparse reward because the action space is so
large: the agent could have build a barracks or produce a unit; it is unlikely that the agents
will by chance issue lots of moving actions (out of 6 action types) with correct directions (out
of 4 directions) and then start attacking. Its RA1

gives the difference between previous and
current Euclidean distance between the enemy base and its closet unit owned by the agent as
the shaped reward in addition to RM.

2. ProduceCombatUnits: In this task, the agent’s objective is to learn to build as many combat
units as possible. Its RM gives a +1 reward for each combat unit the agent produces. This
is a more challenging task because the agent needs to learn 1) harvest resources, 2) produce
barracks, 3) produce combat units once enough resources are gathered, 4) move produced
combat units out of the way so as to not block the production of new combat units. Its RA1

gives +1 for constructing every building (e.g. barracks), +1 for harvesting resources, +1 for
returning resources, and +7 for each combat unit it produces.

3. DefeatRandomEnemy: In this task, the agent’s objective is to defeat a biased random bot of
which the attack, harvest and return actions have 5 times the probability of other actions. Its
RM gives the match outcome as the reward (-1 on a loss, 0 on a draw and +1 on a win). This
is the most difficult task we examined because the agent is subject to the full complexity of the
game, being required to make both macro-decisions (e.g. deciding the high-level strategies to
win the game) and micro-decisions (e.g. deciding which enemy units to attack. In comparison,
its RA1

gives +5 for winning, +1 for harvesting one resource, +1 for returning resources, +1
for producing one worker, +0.2 for constructing every building, +1 for each valid attack action
it issues, +7 for each combat unit it produces, and +(0.2 ∗ d) where d is difference between
previous and current Euclidean distance between the enemy base and its closet unit owned by
the agent.

8.4.2 Agent Setup

We use PPO16 as the base DRL algorithm to incorporate action guidance. We compared the
following strategies:

3https://github.com/santiontanon/microrts
4https://github.com/vwxyzjn/gym-microrts

Chapter 8: Action Guidance 8.4 Experimental Study

https://github.com/santiontanon/microrts
https://github.com/vwxyzjn/gym-microrts

67

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

shaped reward
action guidance - long adaptation w/ PLO
action guidance - short adaptation w/ PLO
sparse reward

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

action guidance - short adaptation
action guidance - short adaptation w/ PLO

Figure 8.2: The faint lines are the actual sparse return of each seed for selected strategies in
ProduceCombatUnits; solid lines are their means. The left figure showcase the sample-efficiency
of action guidance; the right figure is a motivating example for PLO.

1. Sparse reward (first baseline). This agent is trained with PPO on RM for each task.

2. Shaped reward (second baseline). This agent is trained with PPO on RA1
for each task.

3. Action guidance - long adaptation. The agent is trained with PPO + action guidance
with shift = 2, 000, 000 time steps, adaptation = 7, 000, 000 time steps, and ϵend = 0.0

4. Action guidance - short adaptation. The agent is trained with PPO + action guidance
with shift = 800, 000 time steps, adaptation = 1, 000, 000 time steps, and ϵend = 0.0

5. Action guidance - mixed policy. The agent is trained with PPO + action guidance with
shift = 2, 000, 000 time steps and adaptation = 2, 000, 000 time steps, and ϵend = 0.5. We call
this agent “mixed policy” because it will eventually have 50% chance to sample actions from
the main policy and 50% chance to sample actions from the auxiliary policy. It is effectively
having mixed agent making decisions jointly.

Although it is desirable to add SAC-X to the list of strategies compared, it was not designed to
handle domains with large discrete action spaces. Lastly, we also toggle the PLO option for action
guidance - long adaptation, action guidance - short adaptation, action guidance - mixed policy, and
sparse reward training strategies for a preliminary ablation study.

8.4.3 Experimental Results

Each of the 6 strategies is evaluated in 3 tasks with 10 random seeds. We report the results in
Table 8.1. From here on, we use the term “sparse return” to denote the episodic return according
to RM, and “shaped return” the episodic return according to RA1 . Below are our observations.

Action guidance is almost as sample-efficient as reward shaping. Since the auxiliary
policy learns from RA1

and the main policy takes a lot of action guidance from the auxiliary policy
during the shift period, the main policy is more likely to discover the first sparse reward more
quickly and learn more efficiently. As an example, Figure 8.2 demonstrates such sample-efficiency
in ProduceCombatUnits, where the agents trained with sparse reward struggle to obtain the very
first reward. In comparison, most action guidance related agents are able to learn almost as fast as
the agents trained with shaped reward.

Action guidance eventually optimizes the sparse reward. This is perhaps the most
important contribution of our paper. Action guidance eventually optimizes the main policy over the
true objective, rather than optimizing shaped rewards. Using the ProduceCombatUnits task as an
example, the agent trained with shaped reward would only start producing combat units once all

Chapter 8: Action Guidance 8.4 Experimental Study

68

Table 8.1: The average sparse return achieved by each training strategy in each task over 10
random seeds.

LearnToAttack ProduceCombatUnit DefeatRandomEnemy

sparse reward (first baseline) 3.30 ± 5.04 0.00 ± 0.01 -0.07 ± 0.03
sparse reward w/ PLO 0.00 ± 0.00 0.00 ± 0.01 -0.05 ± 0.03
shaped reward (second baseline) 10.00 ± 0.00 9.57 ± 0.30 0.08 ± 0.17
action guidance - long adaptation 11.00 ± 0.00 8.31 ± 2.62 0.11 ± 0.35
action guidance - long adaptation w/ PLO 11.00 ± 0.01 6.96 ± 4.04 0.52 ± 0.35
action guidance - mixed policy 11.00 ± 0.00 9.67 ± 0.17 0.40 ± 0.37
action guidance - mixed policy w/ PLO 10.67 ± 0.12 9.36 ± 0.35 0.30 ± 0.42
action guidance - short adaptation 11.00 ± 0.01 2.95 ± 4.48 -0.06 ± 0.04
action guidance - short adaptation w/ PLO 11.00 ± 0.00 9.48 ± 0.51 -0.05 ± 0.03

the resources have been harvested, probably because the +1 reward for harvesting and returning
resources are easy to retrieve and therefore the agents exploit them first. Only after these resources
are exhausted would the agents start searching for other sources of rewards then learn producing
combat units.

In contrast, the main policy of action guidance - short adaptation w/ PLO are initially guided
by the shaped reward agent during the shift period. During the adaptation period, we find the
main policy starts to optimize against the real objective by producing the first combat unit as soon
as possible. This disrupts the behavior learned from the auxiliary policy and thus cause a visible
degrade in the main policy’s performance during 1M and 2M timesteps as shown in Figure 8.2.
As the adaption period comes to an end, the main policy becomes fully independent and learn
to produce combat units and harvest resources concurrently. This behavior matches the common
pattern observed in professional RTS game players and is obviously more desirable because should
the enemy attack early, the agent will have enough combat units to defend.

In the DefeatRandomEnemy task, the agents trained with shaped rewards learn a variety of
behaviors; some of them learn to do a worker rush while others learn to focus heavily on harvesting
resources and producing units. This is likely because the agents could get similar level of shaped
rewards despite having diverse set of behaviors. In comparison, the main policy of action guidance
- long adaptation w/ PLO would start optimizing the sparse reward after the shift period ends; it
almost always learns to do a worker rush, which an efficient way to win against a random enemy as
shown in Figure 8.1.

The hyper-parameters adaptation and shift matter. Although the agents trained with
action guidance - short adaptation w/ PLO learns the more desirable behavior, they perform consid-
erably worse in the harder task of DefeatRandomEnemy. It suggests the harder that task is perhaps
the longer adaptation should be set. However, in ProduceCombatUnits, agents trained with action
guidance - long adaptation w/ PLO exhibits the same category of behavior as agents trained with
shaped reward, where the agent would only start producing combat units once all the resources have
been harvested. A reasonable explanation is that higher adaptation gives more guidance to the main
policy to consistently find the sparse reward, but it also inflicts more bias on how the task should
be accomplished; lower adaption gives less guidance but increase the likelihood for the main policy
to find better ways to optimize the sparse rewards.

Positive Learning Optimization results show large variance. We found PLO to be an
interesting yet sometimes effective optimization in stabilizing the performance for agents trained
with action guidance. However, the results show large variance: PLO either significantly helps the
agents or make them much worse. As a motivating example, Figure 8.2 showcases the actual sparse
return of 10 seeds in ProduceCombatUnits, where agents trained with action guidance - short adap-
tation and PLO seem to always converge while agents trained without PLO would only sometimes
converge. However, PLO actually hurt the performance of action guidance - long adaptation in
ProduceCombatUnits by having a few degenerate runs as shown in Figure 8.2. It is also worth
noting the PLO does not help the sparse reward agent at all, suggesting PLO is a an optimization
somewhat unique to action guidance.

Chapter 8: Action Guidance 8.4 Experimental Study

69

(a) shaped reward
(https://youtu.be/MB0FjW-3Ktc)

(b) action guidance
(https://youtu.be/r5Nsda_YTNE)

Figure 8.3: The screenshot shows the typical learned behavior of agents in the task of Pro-
duceCombatUnits. (a) shows an agent trained with shaped reward function RA1 learn to only
produce combat units once the resources are exhausted (i.e. it produces three combat units at
t = 1410). In contrary, (b) shows an agent trained with action guidance learn to produce units
and harvest resources concurrently (i.e. it produces three combat units at t = 890). Click on
the link below figures to see the full videos of trained agents.

Action guidance - mixed policy is viable. According to Table 8.1, agents trained with
action guidance - mixed policy with or without PLO seem to perform relatively well in all three tasks
examined. This is a interesting discovery because it suggests action guidance could go both ways:
the auxiliary policies could also benefit from the learned policies of the main policy. An alternative
perspective is to consider the main policy and the auxiliary policies as a whole entity that mixes
different reward functions, somehow making joint decision and collaborating to accomplish common
goals.

8.5 Discussion

In this paper, we present a novel technique called action guidance that successfully trains the agent
to eventually optimize over sparse rewards yet does not lose the sample efficiency that comes with
reward shaping, effectively getting the best of both worlds. Our experiments with DefeatRandomEn-
emy in particular show it is possible to train a main policy on the full game of µRTS using only
the match outcome reward, which suggests action guidance could serve as a promising alternative
to the training paradigm of AlphaStar27 that uses supervised learning with human replay data to
bootstrap an agent. As part of our future work, we would like to scale up the approach to defeat
stronger opponents.

Chapter 8: Action Guidance 8.5 Discussion

https://youtu.be/MB0FjW-3Ktc
https://youtu.be/r5Nsda_YTNE

70

Chapter 9: Unit-level Control

The work presented in the previous chapters (6, 7, and 8) all work with a restricted action space
of µRTS, which only issues a single action to a single unit at each time step. In comparison, the
previous µRTS bots that leverage other ML methods (e.g., Monte-Carlo Tree Search) can issue
actions to all the player-owned units simultaneously. This limitation makes it difficult to evaluate
our RL agent against previous µRTS bots. In this chapter, we study techniques that will allow us to
scale the RL agent to the full game of µRTS. In particular, we provide action masks on the action
parameters, significantly improving the RL agent’s training efficiency.

This chapter has two main contributions: 1) we introduce a new version of Gym-µRTS for full-
game RTS research, and 2) we present a collection of techniques to scale DRL to play full-game
µRTS as well as ablation studies to demonstrate their empirical importance. Our best-trained bot
can defeat every µRTS bot we tested from the past µRTS competitions when working in a single-map
setting, resulting in a state-of-the-art DRL agent while only taking about 60 hours of training using
a single machine (one GPU, three vCPU, 16GB RAM). Being able to train RL agents under full-
game settings makes this line of research more accessible to researchers — previous work under the
full-game settings leverages StarCraft II and has high computational costs27, usually requiring the
use of thousands of GPUs and CPUs for weeks. The work of this chapter is based on the following
publication:

• Shengyi Huang, Santiago Ontañón, Chris Bamford, and Lukasz Grela. Gym-µrts: Toward
affordable full game real-time strategy games research with deep reinforcement learning. In
2021 IEEE Conference on Games (CoG), pages 1–8. IEEE, 2021

9.1 Authorship

Shengyi Huang led the testbed design, experiment design, and paper writing. Chris Bamford led
the experiments with the encoder-decoder network. Lukasz Grela helped with project planning and
prototyping.

9.2 Motivation

In recent years, researchers have achieved great success in applying Deep Reinforcement Learn-
ing (DRL) algorithms to Real-time Strategy (RTS) games. Most notably, DeepMind trained a
grandmaster-level AI called AlphaStar with DRL for the popular RTS game StarCraft II27. Al-
phaStar demonstrates impressive strategy and game control, presenting many human-like behaviors,
and is able to defeat professional players consistently. Given most previously designed bots fail to
perform well in the full-game against humans30, AlphaStar clearly represents a significant milestone
in the field. While this accomplishment is impressive, it comes with high computational costs. In
particular, AlphaStar and even further attempts by other teams to lower the computational costs144

still require thousands of CPUs and GPUs/TPUs to train the agents for an extended period of time,
which is outside of the computational budget of most researchers.

This paper has two main contributions to address this issue. The first main contribution is to
introduce Gym-µRTS as an RL testbed for affordable full-game RTS research, which focuses on all
aspects of the game such as harvesting resources, defending units, and attack enemies (this is in
contrast to mini-games that only focus on one aspect of the game). Gym-µRTS is a reinforcement
learning interface for the RTS game µRTS145, which has been a popular platform to test out a variety
of AI techniques for RTS games. Despite its simple visuals, µRTS captures the core challenges of RTS
games. Although Gym-µRTS shares many similarities to the StarCraft II Learning Environment
(PySC2)107, there are also many key differences (e.g., PySC2 uses a human-like action space whereas

71

Figure 9.1: Screenshot of our best-trained agent (top-left) playing against CoacAI (bottom-
right), the 2020 µRTS AI competition champion. Strategy-wise, our agent usually defeats
CoacAI by harvesting resources (green squares) efficiently using two workers (dark gray circles),
doing a highly optimized worker rush that takes out the enemy base in the bottom right (shown
with 50% damage), followed by a transition to the mid and late game by producing combat
units (colored circles) from the barracks (dark gray squares). The blue and red border suggest
the unit is owned by player 1 and 2, respectively. See additional combat videos here: https:

//bit.ly/3llOhex

Gym-µRTS uses a lower-level action space). Through Gym-µRTS, we are able to conduct full-game
RTS research using DRL without extensive technical resources such as high-performance compute
clusters.

Despite the simplifications done in µRTS, playing 1v1 competitive matches via DRL is still a
daunting task. Thus, our second main contribution is a collection of techniques to scale DRL to
play µRTS. We start with a Proximal Policy Optimization (PPO)16 implementation that matches
implementation details of PPO in openai/baselines 33, and incrementally stack augmentations to
account for Gym-µRTS’s combinatorial action space (all units must be controlled simultaneously)
and improve training efficiency and performance. Among these augmentations, two are essential :
1) action composition and 2) invalid action masking. These two augmentations combined allowed
us to bootstrap an initial agent that could compete on the 16 × 16 map to a reasonable standard.
Additionally, we experimented with 3) diversified training opponents, and 4) different neural network
architectures. We provide ablation studies to shed insights on the importance of each of these
augmentations. Our best-trained agent can defeat every µRTS bot we tested against, from the past
µRTS competitions1 in a single-map setting, establishing a new state-of-the-art for DRL bots in
µRTS while only taking about 60 hours of training using a single machine (one GPU, three vCPU,
16GB RAM). We make source code and trained models 2, as well as all the metrics, logs, and
recorded videos3 available for comparison.

1https://sites.google.com/site/micrortsaicompetition/home
2https://github.com/vwxyzjn/gym-microrts-paper
3https://wandb.ai/vwxyzjn/gym-microrts-paper

Chapter 9: Unit-level Control 9.2 Motivation

https://bit.ly/3llOhex
https://bit.ly/3llOhex
https://sites.google.com/site/micrortsaicompetition/home
https://github.com/vwxyzjn/gym-microrts-paper
https://wandb.ai/vwxyzjn/gym-microrts-paper

72

9.3 Background

Real-time Strategy (RTS) games are complex adversarial domains, typically simulating battles be-
tween a large number of combat units, that pose a significant challenge to both human and artificial
intelligence29. Designing AI techniques for RTS games is challenging due to a variety of reasons:
1) players need to issue actions in real-time, leaving little time computational budget, 2) the action
spaces grows combinatorially with the number of units in the game, 3) the rewards are very sparse
(win/loss at the end of the game), 4) generalizing against diverse set of opponents and maps is
difficult, and 5) stochasticity of game mechanics and partial observability (these last two are not
considered in this paper).

StarCraft I & II are very popular RTS games and, among other games, have attracted much
research attention. Past work in this area includes reinforcement learning146, case-based reason-
ing147;148, or game tree search149–152 among many other techniques designed to tackle different
sub-problems in the game, such as micromanagement, or build-order generation. In the full-game
settings, however, most techniques have had limited success in creating viable agents to play com-
petitively against professional StarCraft players until recently. In particular, DeepMind introduced
AlphaStar27, an agent trained with DRL and self-play, that sets a new state-of-the-art bot for
StarCraft II, defeating professional players in the full-game. In Dota 2, a popular collaborative
online-player game that shares many similar challenges as StarCraft, Open AI Five66 is able to
create agents that can achieve super-human performance. Although these two systems achieve great
performance, they come with large computational costs. AlphaStar used 3072 TPU cores and 50,400
preemptible CPU cores for a duration of 44 days27;144. This makes it difficult for those with less
computational resources to do full-game RTS research using DRL.

There are usually three ways to circumvent this computational costs. The first way is to focus
on sub problems such as combat scenarios111. The second way is to reduce the full-game complexity
by either considering hierarchical actions spaces or incorporating scripted actions67;110. The third
way is to use alternative game simulators that run faster such as Mini-RTS108, Deep RTS153, and
CodeCraft4.

We show that Gym-µRTS as an alternative that could be used for full-game RTS research with
the full action space while using affordable computational resources.

(a) Unit Action Simulation (UAS) calls the policy
iteratively until all units have actions (at each step,
the policy chooses a unit and issue a unit action to
it).

(b) Gridnet predicts an action for each cell in the
map (it predicts all the action component planes
in one step), which then define which actions each
unit will perform.

Figure 9.2: Demonstration of how actions are assigned under UAS and Gridnet.

4https://github.com/cswinter/DeepCodeCraft

Chapter 9: Unit-level Control 9.3 Background

https://github.com/cswinter/DeepCodeCraft

73

9.4 Gym-µRTS: Unit-level Control

Gym-µRTS5 is a reinforcement learning interface for the RTS games simulator µRTS6. Despite
having a simplified implementation, µRTS captures the core challenges of RTS games, such as com-
binatorial action space, real-time decision-making, optionally partial observability and stochasticity.
Gym-µRTS’s observation space provides a series of feature maps similar to PySC2 (the StarCraft
II Learning environment107). Its action space design, however, is more low-level due to its lack of
AI-assisted actions. In this section, we introduce their technical details.

9.4.1 Observation Space.

Given a map of size h × w, the observation is a tensor of shape (h,w, nf), where nf is a number
of feature planes that have binary values. The observation space used in this paper uses 27 feature
planes as shown in Table 7.1. The different feature planes result as the concatenation of multiple
one-hot encoded features. As an example, if there is a worker player 1 with hit points equal to 1, not
carrying any resources, and currently not executing any actions, then the one-hot encoding features
will look like this (see Table 7.1):

[0, 1, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0]

Each feature plane contains one value for each coordinate in the map. The values for the 27 feature
planes for the position in the map of such worker will thus be:

[0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

9.4.2 Action Space.

Compared to traditional reinforcement learning environments, the design of the action space of RTS
games is more difficult because, depending on the game state, there is a different number of units
to control, and each unit might have different number of actions available. This poses a challenge
for directly applying off-the-shelf DRL algorithm such as PPO that generally assume a fixed output
size for the actions. Early work on RL in RTS games simply learned policies for individual units,
rather than having the policy control all the units at once146. To address this issue, we decompose
the action space into two parts: the unit action space (the space of possibilities for issuing actions
to only one unit) and the player action space (the space of unit actions for all the units a player
owns).

In the unit action space, given a map of size h×w, the unit action is an 8-dimensional vector of
discrete values as specified in Table 9.1. The first component of the unit action vector represents the
unit in the map to issue commands to, the second is the unit action type, and the rest of components
represent the different parameters different unit action types can take. Depending on which unit
action type is selected, the game engine will use the corresponding parameters to execute the action.
As an example, if the RL agent issues a “move south” unit action to the worker at x = 3, y = 2 in
a 16× 16 map, the unit action will be encoded in the following way:

[3 + 2 ∗ 16, 1, 2, 0, 0, 0, 0, 0]

In the player action space, we compare two ways to issue player actions to a variable number of
units at each frame: Unit Action Simulation (UAS) and Gridnet154.

Their mechanisms are best illustrated through an example as shown in Figs. 9.2a and 9.2b, where
the player owns two workers and a base in a 4× 5 map.

UAS calls the RL policy iteratively. At each step, the policy chooses a unit based on the source
unit masks (a vector of h× w scalars). It then chooses the action type and parameter via the unit

5https://github.com/vwxyzjn/gym-microrts
6https://github.com/santiontanon/microrts

Chapter 9: Unit-level Control 9.4 Gym-µRTS: Unit-level Control

https://github.com/vwxyzjn/gym-microrts
https://github.com/santiontanon/microrts

74

Table 9.1: Observation features and action components. ar = 7 is the maximum attack range.

Observation Features Planes Description

Hit Points 5 0, 1, 2, 3, ≥ 4
Resources 5 0, 1, 2, 3, ≥ 4
Owner 3 player 1, -, player 2
Unit Types 8 -, resource, base, barrack, worker, light, heavy, ranged
Current Action 6 -, move, harvest, return, produce, attack

Action Components Range Description

Source Unit [0, h× w − 1] the location of the unit selected to perform an action
Action Type [0, 5] NOOP, move, harvest, return, produce, attack
Move Parameter [0, 3] north, east, south, west
Harvest Parameter [0, 3] north, east, south, west
Return Parameter [0, 3] north, east, south, west
Produce Direction Parameter [0, 3] north, east, south, west
Produce Type Parameter [0, 6] resource, base, barrack, worker, light, heavy, ranged
Relative Attack Position [0, a2r − 1] the relative location of the unit that will be attacked

action masks (a vector of 6 + 4 + 4 + 4 + 4 + 7 + 49 scalars). We then compute a “simulated game
state” where that action has been issued (and any potential rewards collected). Once all three units
have been issued actions, the simulated game states are discarded, and the three actions are collected
and sent to the actual game environment.

Under Gridnet154, The RL agent receives a player action mask (a tensor of shape (h,w, 1 + 6 +
4+ 4+ 4+ 4+ 7+ 49), where the first plane indicates if the source unit is available). It then issues
actions to each cell in this map in one single step, that is, issues in total 4 ∗ 5 = 20 unit actions.
The environment executes the three valid actions (actions in cells with no player-owned units are
ignored).

9.4.3 The Action Spaces of Gym-µRTS and PySC2

Although Gym-µRTS is heavily inspired by and shares many similarities with PySC2107, their action
space designs are considerably different. Specifically, PySC2 has designed its action space to mimic
the human interface, while Gym-µRTS has a more low-level action that require actions being issued
for each individual unit. This distinction is rather interesting from a research standpoint because
certain challenges are easier for an AI agent and some more difficult.

Consider the canonical task of harvesting resources and returning them to the base. In PySC2,
the RL agent would need to issue two actions at two timesteps 1) select an area that has workers
and 2) move the selected workers towards to a coordinate that has resources. Then, the workers
will continue harvesting resources until otherwise instructed. Note that this sequence of actions is
assisted by AI algorithms such as path-finding. After the workers harvest the resources, the engine
automatically determines the closest base for returning the resources, and repeating these actions
to continuously harvest resources. So the challenge for the RL agent is to learn to select the correct
area and move to the correct coordinates. In Gym-µRTS, however, the RL agent can only issue
primitive actions to the workers such as “move north for one cell” or “harvest resource that is one
cell away at north”. Therefore, it needs to constantly issue actions to control units at all times,
having to learn how to perform these AI-assisted decisions from scratch7.

The benefit of PySC2’s approach is that it makes it easier to do imitation learning from human
datasets and the resulting agent will have a fairer comparison when evaluated against humans since
the AI and the human are mostly playing the same game. That being said, the human interface

7Notice, however that µRTS offers both the low-level interface and a PySC2-style interface with AI-assisted actions,
but for Gym-µRTS, we only expose the former.

Chapter 9: Unit-level Control 9.4 Gym-µRTS: Unit-level Control

75

PPO + invalid action masking
+ diverse bots + IMPALA-CNN

PPO + invalid action masking
 + diverse bots

PPO + invalid action masking

PPO + partial invalid action masking

PPO

UA
S

0.91

0.82

0.82

0.32

0.0

0.22M

0.39M

0.39M

0.39M

0.39M

63.67h

37.57h

39.2h

49.95h

38.8h

0.00 0.25 0.50 0.75 1.00
Cumulative Win Rate

(Higher is Better)

PPO + invalid action masking
+ diverse bots + encoder-decoder

PPO + invalid action masking
 + diverse bots + IMPALA-CNN
PPO + invalid action masking

 + diverse bots

PPO + invalid action masking

PPO + partial invalid action masking

PPO

Gr
id

ne
t

0.89

0.84

0.87

0.73

0.0

0.0

0 2 4 6
Parameters in Model 1e6

0.84M

5.27M

5.43M

5.43M

5.43M

5.43M

0 50 100 150
Runtime

(Lower is Better)

117.03h

85.65h

59.65h

62.95h

68.89h

121.27h

Figure 9.3: Ablation study for UAS and Gridnet.

could be an artificial limitation to the AI system. In particular, the human interface is constructed
to accommodate the human limitations: humans’ eyes have limited range, so camera locations are
designed to help capture larger maps, and humans have limited physical mobility, so hotkeys are
set to help control a group of units with one mouse click. However, machines don’t have these
limitations and can observe the entire map and issue actions to all units individually.

9.4.4 Reward Function

We use a shaped reward function to train the agents, which gives the agent +10 for winning, 0
for drawing, -10 for losing, +1 for harvesting one resource, +1 for producing one worker, +0.2 for
constructing a building, +1 for each valid attack action it issues, +4 for each combat unit it produces.
It gives the rewards to the frame at which the events are initialized (e.g. attack takes 5 game frames
to finish, but the attack reward is given at the first frame). For reporting purposes, we also keep
track of the sparse reward, which is +1 for winning, 0 for drawing, -1 for losing. The shaped reward
weights are picked by hand with very little tuning.

Note this shaped reward function is similar to the one used in Open AI Five for Dota 266. Like in
Open AI Five, it is possible for the agents to gain more shaped rewards by doing other good behaviors
than winning the game outright. Notice we have avoided using very large win/lose rewards because
anecdotally large reward numbers could cause worse performance for RL algorithms, which might
be the reason why reward normalization20 or reward clipping11 have been used in previous work.

9.5 Experimental Study

We use PPO16, a popular policy gradient algorithm, to train agents for all experiments in this paper.
In addition to PPO’s core algorithm, many implementation details and empirical setting also have
a huge impact on the algorithm’s performance20.

We start with a PPO implementation that matches the implementation details and benchmarked
performance in openai/baselines 338, and use it along with the architecture fromMnih, et al. (denoted
as Nature-CNN)11 as the baseline. We train the RL agents using UAS and Gridnet by playing
against CoacAI, the 2020 µRTS competition winner, in the standard 6x6basesWorkers map, where
the RL agents always spawn from the top left position and end episodes after 2000 game ticks. We
then incrementally include augmentations for both UAS and Gridnet and compare their relative
performance.

8See https://costa.sh/blog-the-32-implementation-details-of-ppo.html

Chapter 9: Unit-level Control 9.5 Experimental Study

76

We run each ablation with 4 random seeds each. Then, we select the best performing seeds
according to the reported sparse reward function and evaluate them against a pool of 11 bots with
various strategies that have participated in previous µRTS competitions (other competition bots are
not included due to either staleness or difficulty to set up) and 2 baseline bots which are mainly used
for testing. All µRTS bots are configured to use their µRTS competition parameters and setups.
The name, category and best result of these bots are listed in Table 9.2. The evaluation involves
playing 100 games against each bot in the pool for 4000 maximum game ticks, and we report the
cumulative win rate, the model size, and total run time in Figure 9.3. To further provide insights,
we record videos of the RL agents against each of the bots in the pool and make them publicly
available9. Let us now describe the different augmentations we added on top of PPO.

9.5.1 Action Composition

After having solved the problem of issuing actions to a variable number of units (via either UAS or
Gridnet), the next problem is that even the action space of a single unit is too large. Specifically, to
issue a single action at in µRTS using UAS, according to Table 9.1, we have to select a Source Unit,
Action Type, and its corresponding action parameters. So in total, there are hw × 6× 4× 4× 4×
4 × 6 × a2r = 9216(hwa2r) number of possible discrete actions, which includes many invalid actions,
which is huge even for small maps (about 50 million in the map size we use in this paper).

To address this problem, we use action composition, where we consider an action as composed
of some smaller independent discrete actions. Namely, at is composed of a set of smaller actions D =
{aSource Unit

t , aAction Type
t , aMove Parameter

t , aHarvest Parameter
t , aReturn Parameter

t , aProduce Direction Parameter
t ,

aProduce Type Parameter
t , aRelative Attack Position

t }. And the policy gradient is updated in the following
way (without considering the PPO’s clipping for simplicity):

T−1∑
t=0

∇θ log πθ(at|st)Gt =

T−1∑
t=0

∇θ

∑
ad
t∈D

log πθ(a
d
t |st)

Gt

=

T−1∑
t=0

∇θ log

 ∏
ad
t∈D

πθ(a
d
t |st)

Gt

Implementation-wise, for each action component, the logits of the corresponding shape are output
by the policy, which we refer to as action component logits. Each action adt is sampled from a
softmax distribution parameterized by these action component logits. In this way, the algorithm has
to generate hw+6+4+ 4+ 4+ 4+ 6+ a2r = hw+36+ a2r logits, significantly less than 9216(hwa2r)
(301 vs 50 million).

9.5.2 Invalid Action Masking

The next most important augmentation in our experiments is invalid action masking, which “masks
out” invalid actions out of the action space (by exploiting the fact that we know the rules of the
game), significantly reducing it. This is used in PySC2107, OpenAI Five66, and a number of related
work with large action spaces111.

Masks are generated and being applied as shown in Figure 9.4. Under UAS, the agent would
first sample a source unit based on the source units masks of shape (hw), then query the game client
for the action type and parameter mask of the said units with shape (78). Under Gridnet, the agent
would receive all the masks up front on source unit, action type and parameter with shape (hw, 79),
where the first plane of 79 is the mask on the source unit selection. Note that in both cases, the
agent received a full action mask that in a sense significantly reduce the search space. In contrast,
PySC2 and SMAC (the StarCraft Multi-Agent Challenge)111 would only provide a partial mask
on the action type, and the logits of action parameters are unmasked (our action types and action
parameters are function identifiers and arguments in PySC2’s term). This could explain why invalid

9https://wandb.ai/vwxyzjn/gym-microrts-paper-eval/reports/Final-Eval--Vmlldzo0OTY1Mzc

Chapter 9: Unit-level Control 9.5 Experimental Study

https://wandb.ai/vwxyzjn/gym-microrts-paper-eval/reports/Final-Eval--Vmlldzo0OTY1Mzc

77

Feature Maps
Embeddings

Policy Head

Value Head

Action Type and
Parameter Logits

Value

Feature Maps
Inputs

Action Type and
Parameter Mask

(for All Cells)

Masked
Action Type and
Parameter Logits

Action Type
(for All Cells)

Action
Parameter

(for All Cells)

(a) Gridnet.

Feature Maps
Embeddings

Policy Head

Value Head

Source Unit
Logits

Action Type and
Parameter Logits

Value

Feature Maps
Inputs

Source Unit
Mask

Source Unit

Masked
Source Unit

Logits

Action Type and
Parameter Mask

Masked Action
Type and

Parameter Logits

Action Type Action
Parameter

(b) UAS.

Figure 9.4: Neural network architectures for Gridnet and UAS. The green boxes are (condi-
tional) inputs from the environments, blue boxes are neural networks, red boxes are outputs,
and purple boxes are sampled outputs.

action masking does not seem to cause as drastic of a difference in PySC2 as shown by Kanervisto
et al.120.

In the interest of ablation study, we also conduct experiments that provide masking on the
action types but not the action parameters, which is more similar to PySC2’s settings. As shown in
Figure 9.3, we see that having only a partial mask has little impact whereas having the full mask
considerably improves performance. Although the action space and PySC2 is quite different as
discussed above, masking all invalid actions maximally reduces the action space, hence simplifying
the learning task. We therefore believe that the PySC2 agents could receive a performance boost
by providing masks on function arguments as well.

9.5.3 Other augmentations

This section details other additional augmentations that contribute to the agents’ performance, but
not as much as the previous two (which are essential for having an agent that even starts learning
to play the full game).

Diverse Opponents

The baseline setting is to train the agents against CoacAI. However, this lacks a diversified experience
and when evaluating, we frequently see the agents being defeated by AIs as simple as WorkerRush.
To help alleviate this problem, we train the agents against a diverse set of built-in bots. Since
we train with 24 parallel environments for PPO, we set 18 of these environments to have CoacAI
as the opponent, 2 to have RandomBiasedAI, 2 to have WorkerRush, and 2 to have LightRush.
Per Figure 9.3, we see a rather significant performance boost for Gridnet, whereas in UAS the
performance boost is milder.

Nature-CNN vs Impala-CNN vs Encoder-Decoder

To seek better neural network architectures, we experimented with the use of residual blocks155

(denoted IMPALA-CNN), which have been shown to improve the agents’ performance in several
domains like DMLab34. Additionally, Han et al. 154 also experimented with an encoder-decoder
network in Gridnet, so we also conducted experiments using this architecture. Per the ablation study
in Figure 9.3, we see IMPALA-CNN helps with the performance of UAS whereas encoder-decoder
benefits Gridnet.

Chapter 9: Unit-level Control 9.5 Experimental Study

78

Table 9.2: The previous µRTS competition bots.

Name Category Best result

CoacAI Scripted 1st place in 2020
Tiamat MCTS-based 1st place in 2018
MixedBot MCTS-based 2nd place in 2019
Droplet MCTS-based 3rd place in 2019
Izanagi MCTS-based 4th place in 2019
Rojo MCTS-based 5th place in 2020
LightRush Scripted 6th place in 2020
GuidedRojoA3N MCTS-based 7th place in 2020
WorkerRush Scripted 8th place in 2020
NaiveMCTS MCTS-based 9th place in 2020
RandomBiasedAI Scripted 10th place in 2020
Random Scripted -
PassiveAI Scripted -

0

20

40

60

80

100
randomBiasedAI passiveAI workerRushAI lightRushAI

0

20

40

60

80

100
coacAI naiveMCTSAI mixedBot rojo

loss tie win
0

20

40

60

80

100
izanagi

loss tie win

tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

Figure 9.5: Match results: the y-axis shows the number of losses, ties, and wins against AIs
listed in Table 9.2. The Random bot’s match result is excluded for presentation purposes.

9.6 Discussion

Establishing a SOTA in Gym-µRTS. According to Figure 9.3, our best agent consists of ppo +
coacai + invalid action masking + diverse opponents + impala cnn, reaching the cumulative win rate
of 91%. Additionally, Figure 9.5 shows the specific match results, showing this agent can outperform
all other bots in the pool. Note that in the µRTS competition settings the players could start in two
different locations of the map whereas our agent always start from the top left. Nevertheless, due to
the symmetric nature of the map, we could address this issue by “rotating” the map when needed so
that both starting locations look the same to our agent. Therefore, our agent establishes the state
of the art for µRTS in the 6x6basesWorkers map. Note that generalizing to handle a variety of maps
(including the asymmetric ones) in µRTS competition settings is part of our future work (also note
that some work on StarCraft II also focused in the one map setting144, while still requiring large
computation budgets).

Our best agent struggles the most against the Droplet bot, which typically uses a worker rush
strategy, but enhanced thanks to MCTS search. Droplet usually defeats our agent by destroying the
first barracks our agent makes, which is a rare experience with other bots. As a result, our agent
would keep trying to build a barracks until it exhausts its resources, at which point, Droplet would

Chapter 9: Unit-level Control 9.6 Discussion

79

0

50

100

150

Sh
ap

ed
 re

tu
rn

UAS
Gridnet

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.0

0.5

0.0

0.5

Sp
ar

se
 re

tu
rn

Figure 9.6: The shaped and sparse return over training steps for all 4 random seeds of PPO +
invalid action masking for Gridnet and UAS. The curve is smoothed using exponential moving
average with weight 0.99.

have more left over resources, build more workers and eventually defeat our agent. However, if by
chance our agent successfully builds and protects the first barracks and combat units, it is usually
able to defeat Droplet. As part of our future work, we would like to include agents like Droplet
in our training process. However, search-based bots like Droplet significantly decrease the speed of
training.

Hardware Usage and Training Time. Most of our experiments are conducted using 3 vCPUs,
1 GPU, and 16GB RAM. According to Figure 9.3, the experiments take anywhere from 37 hours to
117 hours, where our SOTA agent takes 63 hours.

Model size vs performance. Overall, Gridnet models have more parameters compared to the
UAS models. This is because Gridnet predicts the action type and parameter logits for every cell
in the map. We did not find a strong correlation between the model’s size (in number of trainable
parameters) and the performance of the agents. As shown in Figure 9.3, it is clear that the techniques
such as invalid action masking or different neural network architectures are more important to the
performance than the sheer number of the model’s trainable parameters in our experiments.

Variance w.r.t. Shaped and Sparse Reward. In almost all experiments conducted in this
paper, we observe the RL agents are able to optimize against the shaped rewards well, showing little
variance across different random seeds; however, this is not the case with respect to the sparse reward
(win/loss). We report the sum of shaped rewards and sparse rewards in the episode as shaped return
and sparse return respectively in Figure 9.6, where we usually see little difference in the shaped
return when the sparse (win/loss) return could be drastically different. This is a common drawback
with reward shaping: agents sometimes overfit to the shaped rewards instead of sparse rewards.

UAS vs Gridnet. Figure 9.6 shows a typical result where Gridnet is able to get much higher
shaped return, but it receives relatively similar sparse return as UAS. Upon further inspection of the
agents actual behaviors, we found the Gridnet agents obtain higher shaped return by 1) producing
more barracks, 2) producing more combat units, and 3) harvesting more resources effectively. In
fact, Gridnet agents learn to harvest resources using three workers, which is a behavior we haven’t
observed in any existing bots. We suspect this difference is due to how rewards are attributed in
UAS vs Gridnet. UAS attributes rewards to unit actions individually, while Gridnet attributes the
rewards to the player action collectively.

Depending on the implementation, Gridnet agents usually have many more trainable parameters.
Also, when the player owns a relatively small amount of units, it is faster to step the environment
using UAS because Gridnet has to predict an action for all the cells in the map; however, when the
player owns a large number of units, Gridnet’s mechanism becomes faster because UAS has to do
more simulated steps and thus more inferences.

Chapter 9: Unit-level Control 9.6 Discussion

80

The Amount of Human Knowledge Injected. In our best-trained agents, there are usually
three sources of human knowledge injected: 1) the reward function, 2) invalid action masking, and
3) the use of human-designed bots such as CoacAI. In comparison, AlphaStar uses 1) human replays,
2) its related use of Statistics z and Supervised KL divergence27, and 3) invalid action masking.

9.6.1 Conclusions and Future Work

We present a new efficient library, Gym-µRTS, which allows DRL research to be realized in the
complex RTS environment µRTS. Through Gym-µRTS, we conducted ablation studies on techniques
such as action composition, invalid action masking, diversified training opponents, and novel neural
network architectures, providing insights on their importance to scale agents to play the full game
of µRTS. Our agents can be trained on a single CPU+GPU within 2-4 days, which is a reasonable
hardware-and-time budget that is available to many researchers outside of large research labs

For future work, we would like to consider multiple maps and the partial observability setting
of µRTS (i.e. fog-of-war). Additionally, we also want to experiment with selfplay, which further
reduces human knowledge injected such as the human-designed bots we used in this paper.

Chapter 9: Unit-level Control 9.6 Discussion

81

Chapter 10: Conclusion

In summary, this thesis researched the reproducibility and efficiency challenges in the field of DRL.
Specifically, we identified 37 implementation details that are relevant to reproducing PPO’s perfor-
mance and discussed how they are often left out of the publication. To make DRL more repro-
ducible and transparent, we propose a new framework that utilizes single-file implementations, and
the framework is encapsulated in a DRL library called CleanRL. We further investigated and identify
the reproducibility issues in the context of distributed DRL and proposed a new architecture that
is highly reproducible and performs competitively with existing distributed DRL systems.

Furthermore, we addressed the efficiency challenge in the RL by creating a new testbed called
Gym-µRTS, which we utilize to research different game representation designs and different methods
to deal with large action spaces and sparse rewards. Through a series of work, we were able to
produce a state-of-the-art Gym-µRTS that could defeat every µRTS bot we tested.

10.1 Contributions

This dissertation presents the following contributions:

1. We investigated and proposed a new framework in Part I of this thesis to address the repro-
ducibility challenge in DRL algorithms.

(a) In Chapter 3, we studied Proximal Policy Optimization (PPO) and identified 37 im-
plementation details relevant to reproducing PPO’s performance, whereas many of these
implementation details are left out of PPO’s original paper.

(b) In Chapter 4, we introduced the CleanRL library, which promotes reproducibility and
transparency in the implementation details of DRL algorithms.

(c) In Chapter 5, we demonstrated reproducibility issues in distributed DRL and proposed
the Cleanba architecture, which ensures reproducibility in different hardware configura-
tions.

2. We addressed the efficiency challenge in Part II of this thesis through the development of
more efficient DRL testbeds and exploration of efficient DRL techniques. In particular, we
introduced Gym-µRTS, an efficient RL interface to the µRTS testbed, capturing the core
challenges of RTS games.

(a) In Chapter 6, we compared different observation and action space representations for
µRTS.

(b) In Chapter 7, we provided a detailed description and theoretical foundation of the
optimization technique called invalid action masking.

(c) In Chapter 8, we proposed a novel method of “action guidance” for better leveraging
shaped rewards and sparse rewards simultaneously.

(d) In Chapter 9, we scaled our RL-based approach to the full-game mode of µRTS, allowing
the RL agent to control all the player-owned units concurrently.

10.2 Future Work

There are many promising directions for future work, which include

82

1. Selfplay. Our work with Gym-µRTS has primarily relied on custom reward functions and
human-engineered bots. human-engineered bots are especially difficult to acquire. It would
be valuable to train agents via self-play like done in AlphaStar27, so we can remove the
requirement of human-engineered bots.

2. Partial Observability. Investigating partial observability mode of Gym-µRTS. So far our
research has focused primarily on fully observability mode, but real-world RTS games such as
StarCraft II are partially observable. It would be interesting to investigate methods that could
encourage the exploration of DRL-based agents in the partial observability mode.

3. Generalization. Generalization of unseen scenarios is an especially challenging topic in DRL.
We investigated the agent’s generalization ability into different maps in a paper not presented in
this thesis42 and found the agent’s low-level skill, such as harvesting, still transfers to unseen
maps. However, high-level skills such as strategizing are completely broken. Researching
methods that could better generalize to different map settings would be a valuable future
work.

Chapter 10: Conclusion 10.2 Future Work

83

Part III

Appendix

84

Appendix A: CleanRL

A.1 Benchmark experiments

As mentioned in Section 4.4, we rigorously benchmark our single-file implementations to validate
their quality. Below are the tables that compare performance against reputable resources when
applicable, where the reported numbers are the final average episodic returns of at least 3 random
seeds. For more detailed information, see the main documentation site (https://docs.cleanrl.
dev/).

A.1.1 Proximal Policy Optimization Variants and Performance

Environment ppo.py openai/baselies’ PPO22

CartPole-v1 492.40 ± 13.05 497.54 ± 4.02
Acrobot-v1 -89.93 ± 6.34 -81.82 ± 5.58
MountainCar-v0 -200.00 ± 0.00 -200.00 ± 0.00

Environment ppo atari.py openai/baselies’ PPO (Huang et al., 2022)[ˆ1]

BreakoutNoFrameskip-v4 416.31 ± 43.92 406.57 ± 31.554
PongNoFrameskip-v4 20.59 ± 0.35 20.512 ± 0.50
BeamRiderNoFrameskip-v4 2445.38 ± 528.91 2642.97 ± 670.37

Environment ppo continuous action.py openai/baselies’ PPO22

Hopper-v2 2231.12 ± 656.72 2518.95 ± 850.46
Walker2d-v2 3050.09 ± 1136.21 3208.08 ± 1264.37
HalfCheetah-v2 1822.82 ± 928.11 2152.26 ± 1159.84

Environment ppo atari lstm.py openai/baselies’ PPO22

BreakoutNoFrameskip-v4 128.92 ± 31.10 138.98 ± 50.76
PongNoFrameskip-v4 19.78 ± 1.58 19.79 ± 0.67
BeamRiderNoFrameskip-v4 1536.20 ± 612.21 1591.68 ± 372.95

Environment ppo atari envpool.py (80 mins) ppo atari.py (220 mins)

BreakoutNoFrameskip-v4 389.57 ± 29.62 416.31 ± 43.92
PongNoFrameskip-v4 20.55 ± 0.37 20.59 ± 0.35
BeamRiderNoFrameskip-v4 2039.83 ± 1146.62 2445.38 ± 528.91

https://docs.cleanrl.dev/
https://docs.cleanrl.dev/

85

Environment ppo procgen.py openai/baselies’ PPO22

StarPilot 31.40 ± 11.73 33.97 ± 7.86
BossFight 9.09 ± 2.35 9.35 ± 2.04
BigFish 21.44 ± 6.73 20.06 ± 5.34

Environment ppo atari multigpu.py (160 mins) ppo atari.py (215 mins)

BreakoutNoFrameskip-v4 429.06 ± 52.09 416.31 ± 43.92
PongNoFrameskip-v4 20.40 ± 0.46 20.59 ± 0.35
BeamRiderNoFrameskip-v4 2454.54 ± 740.49 2445.38 ± 528.91

The following table for ppo pettingzoo ma atari.py reports the episodic length instead of episodic
return:

Environment ppo pettingzoo ma atari.py (160 mins)

pong v3 4153.60 ± 190.80
surround v2 3055.33 ± 223.68
tennis v3 14538.02 ± 7005.54

A.1.2 Deep Deterministic Policy Gradient Variant and Performance

Environment ddpg continuous action.py OurDDPG.py70 Tab. 1 DDPG.py using settings
from69 in70 Tab. 1

HalfCheetah 9382.32 ± 1395.52 8577.29 3305.60
Walker2d 1598.35 ± 862.66 3098.11 1843.85
Hopper 1313.43 ± 684.46 1860.02 2020.46

A.1.3 Twin-Delayed Deep Deterministic Policy Gradient Variant and
Performance

Environment td3 continuous action.py TD3.py70 Tab. 1

HalfCheetah 9018.31 ± 1078.31 9636.95 ± 859.065
Walker2d 4246.07 ± 1210.84 4682.82 ± 539.64
Hopper 3391.78 ± 232.21 3564.07 ± 114.74

A.1.4 Soft Actor-Critic Variant and Performance

Environment sac continuous action.py Haarnoja et al. 87

HalfCheetah-v2 10310.37 ± 1873.21 ∼11,250
Walker2d-v2 4418.15 ± 592.82 ∼4,800
Hopper-v2 2685.76 ± 762.16 ∼3,250

Appendix A: CleanRL A.1 Benchmark experiments

https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action.py
https://github.com/sfujim/TD3/blob/master/OurDDPG.py
https://github.com/sfujim/TD3/blob/master/DDPG.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py

86

A.1.5 Phasic Policy Gradient Variant and Performance

Environment ppg procgen.py ppo procgen.py openai/phasic-policy-gradient

Starpilot (easy) 35.19 ± 13.07 33.15 ± 11.99 42.01 ± 9.59
Bossfight (easy) 10.34 ± 2.27 9.48 ± 2.42 10.71 ± 2.05
Bigfish (easy) 27.25 ± 7.55 22.21 ± 7.42 15.94 ± 10.80

A.1.6 Deep Q-learning Variants and Performance

Environment dqn atari.py 10M
steps

Mnih et al. 11 50M
steps

Hessel et al. 23, Fig. 5

BreakoutNoFrameskip-v4 366.928 ± 39.89 401.2 ± 26.9 ∼230 (10M steps)
∼300 (50M steps)

PongNoFrameskip-v4 20.25 ± 0.41 18.9 ± 1.3 ∼20 (10M steps)
∼20 (50M steps)

BeamRiderNoFrameskip-v4 6673.24 ± 1434.37 6846 ± 1619 ∼6000 (10M steps)
∼7000 (50M steps)

Environment dqn.py

CartPole-v1 488.69 ± 16.11
Acrobot-v1 -91.54 ± 7.20
MountainCar-v0 -194.95 ± 8.48

A.1.7 Categorical Deep Q-learning Variants and Performance

Environment c51 atari.py 10M
steps

Bellemare et al. 12,
Fig. 14 50M steps

Hessel et al. 23, Fig. 5

BreakoutNoFrameskip-v4 461.86 ± 69.65 748 ∼500 (10M steps)
∼600 (50M steps)

PongNoFrameskip-v4 19.46 ± 0.70 20.9 ∼20 (10M steps)
∼20 (50M steps)

BeamRiderNoFrameskip-v4 9592.90 ± 2270.15 14,074 ∼12000 (10M steps)
∼14000 (50M steps)

Environment c51.py

CartPole-v1 481.20 ± 20.53
Acrobot-v1 -87.70 ± 5.52
MountainCar-v0 -166.38 ± 27.94

A.2 Interactive Shell

In CleanRL, we have put most of the variables in the global python name scope. This makes it easier
to inspect the variables and their shapes. The following figure shows a screenshot of the Spyder

Appendix A: CleanRL A.2 Interactive Shell

87

editor 1, where the code is on the left and the interactive shell is on the right. In the interactive
shell, we can easily inspect the variables for debugging purposes without modifying the code.

A.3 Maintaining Single-file Implementations

Despite the many benefits that single-file implementations offer, one downside is excessive amount
of duplicate code, which makes them difficult to maintain. To help address this challenge, we have
adopted a series of development tools to reduce maintenance burden. These tools are:

1. poetry (https://python-poetry.org/): poetry is a dependency management tool that helps
resolve and pins dependency versions. We use poetry to improve reproducibility and provide
a smooth dependency installation experience. See our installation documentation (https:
//docs.cleanrl.dev/get-started/installation/) for more detail.

2. pre-commit (https://pre-commit.com/): pre-commit is a tool that helps us automate a
sequence of short tasks (called pre-commit “hooks”) such as code formatting. In particular,
we always use the following hooks when submitting code to the main repository. See https:

//github.com/vwxyzjn/cleanrl/blob/master/CONTRIBUTING.md for more information.

(a) pyupgrade (https://github.com/asottile/pyupgrade): pyupgrade upgrades syntax
for newer versions of the language.

(b) isort (https://github.com/PyCQA/isort): isort sorts imported dependencies according
to their type (e.g, standard library vs third-party library) and name.

1https://www.spyder-ide.org/

Appendix A: CleanRL A.3 Maintaining Single-file Implementations

https://python-poetry.org/
https://docs.cleanrl.dev/get-started/installation/
https://docs.cleanrl.dev/get-started/installation/
https://pre-commit.com/
https://github.com/vwxyzjn/cleanrl/blob/master/CONTRIBUTING.md
https://github.com/vwxyzjn/cleanrl/blob/master/CONTRIBUTING.md
https://github.com/asottile/pyupgrade
https://github.com/PyCQA/isort
https://www.spyder-ide.org/

88

(c) black (https://black.readthedocs.io/en/stable/): black enforces an uniform code
style across the codebase.

(d) autoflake (https://github.com/PyCQA/autoflake): autoflake helps remove unused im-
ports and variables.

(e) codespell (https://github.com/codespell-project/codespell): codespell helps avoid
common incorrect spelling.

3. Docker (https://www.docker.com/): docker helps us package the code into a container which
can be used to orchestrate training in a reproducible way.

(a) AWS Batch (https://aws.amazon.com/batch/): Amazon Web Services Batch could
leverage our built containers to run thousands experiments concurrently.

(b) We have built utilities to help package code into a container and submit to AWS Batch us-
ing a few lines of command. In 2020 alone, the authors have run over 50,000+ hours of ex-
periments using this workflow. See https://docs.cleanrl.dev/cloud/installation/
for more documentation.

Appendix A: CleanRL A.3 Maintaining Single-file Implementations

https://black.readthedocs.io/en/stable/
https://github.com/PyCQA/autoflake
https://github.com/codespell-project/codespell
https://www.docker.com/
https://aws.amazon.com/batch/
https://docs.cleanrl.dev/cloud/installation/

89

A.4 W&B Editing Panel

A screenshot of the W&B panel that allows the the users to change smoothing weight, add panels
to show different metrics like losses, visualize the videos of the agents’ gameplay, filter, group, sort,
and search for desired experiments.

5. Group experiments by
attributes

3. Filter out experiments

2. Slider to check out videos
in different stages of training

1. Extra settings of the
charts on smoothing weight,
error bars, colors, and
others.

8. Search experiment by
name

6. Select run set from
projects (allow merging

runs from multiple
projects)

9. Runtime of a specific
experiment

4. Add other charts (e.g.
losses)

7. Sort experiments by
attributes

A.5 Stepping Through Stable-baselines 3 Code with a Debugger

In this section, we attempt to run the following Stable-baselines 3 (v1.5.0)2 code with a debugger
to identify the related modules.

from stable_baselines3.common.env_util import make_atari_env

from stable_baselines3.common.vec_env import VecFrameStack

from stable_baselines3 import PPO

env = make_atari_env('PongNoFrameskip-v4', n_envs=4, seed=0)

env = VecFrameStack(env, n_stack=4)

model = PPO('CnnPolicy', env, verbose=1)

model.learn(total_timesteps=25_000)

Here is the list of the related python files and their lines of code (LOC):

1. stable baselines3/ppo/ppo.py - 315 LOC

2. stable baselines3/common/on policy algorithm.py - 280 LOC

3. stable baselines3/common/base class.py - 819 LOC

4. stable baselines3/common/utils.py - 506 LOC

5. stable baselines3/common/env util.py - 157 LOC

6. stable baselines3/common/atari wrappers.py - 249 LOC

2https://github.com/DLR-RM/stable-baselines3/releases/tag/v1.5.0

Appendix A: CleanRL A.4 W&B Editing Panel

https://github.com/DLR-RM/stable-baselines3/releases/tag/v1.5.0

90

7. stable baselines3/common/vec env/ init - .py 73 LOC

8. stable baselines3/common/vec env/dummy vec env - .py 126 LOC

9. stable baselines3/common/vec env/base vec env - .py 375 LOC

10. stable baselines3/common/vec env/util - .py 77 LOC

11. stable baselines3/common/vec env/vec frame stack.py - 65 LOC

12. stable baselines3/common/vec env/stacked observations.py - 267 LOC

13. stable baselines3/common/preprocessing.py - 217 LOC

14. stable baselines3/common/buffers.py - 770 LOC

15. stable baselines3/common/policies.py - 962 LOC

16. stable baselines3/common/torch layers.py - 318 LOC

17. stable baselines3/common/distributions.py - 700 LOC

18. stable baselines3/common/monitor.py - 240 LOC

19. stable baselines3/common/logger.py - 640 LOC

20. stable baselines3/common/callbacks.py - 603 LOC

The total LOC involved is 7759. Notice we have labeled the popular utilities such as vectorized
environments, Atari environment pre-processing wrappers, and episode statistics recording code
with the blue color. This means the total LOC related to core PPO implementation not counting
the blue color files is 6287.

Appendix A: CleanRLA.5 Stepping Through Stable-baselines 3 Code with a Debugger

91

Appendix B: Gym-µRTS

B.1 Estimated AlphaStar cost

We estimate the cost of AlphaStar based on the latest pricing information from Iowa (us-central1)
zone on Google Cloud Platform (GCP). As of February. 17, 2021, on-demand TPU instances with 8
cores cost $8.00 per hour, and preemptible C2 instances costs $0.00822 per hour. Given this pricing,
we get the training cost for AlphaStar is ((8/8) ∗ 3072 + 0.00822 ∗ 50400) ∗ 44 ∗ 24 = $3, 681, 520.12.

B.2 Learning curves and match results

All the learning curves related for UAS and Gridnet can be found at Figure B.1 and Figure B.2,
respectively. Similarly, the match results can be found at Figure B.4 and Figure B.5.

92

0

20

40

60
Sh

ap
ed

 re
tu

rn
Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.000

0.998

0.996

0.994

0.992

0.990

Sp
ar

se
 re

tu
rn

PPO

(a)

0

20

40

60

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.000

0.995

0.990

0.985

Sp
ar

se
 re

tu
rn

PPO + partial invalid action masking

(b)

0

50

100

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.0

0.5

0.0

0.5

Sp
ar

se
 re

tu
rn

PPO + invalid action masking

(c)

0

5

10

15

20

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.000

0.995

0.990

0.985

Sp
ar

se
 re

tu
rn

PPO + naive invalid action masking

(d)

50

100

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.0

0.5

0.0

0.5

Sp
ar

se
 re

tu
rn

PPO + invalid action masking
 + diverse opponents

(e)

0

50

100

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.0

0.5

0.0

0.5

Sp
ar

se
 re

tu
rn

PPO + invalid action masking
+ diverse opponents + IMPALA-CNN

(f)

Figure B.1: UAS learning curves.

Appendix B: Gym-µRTS B.2 Learning curves and match results

93

10

8

6

4
Sh

ap
ed

 re
tu

rn
Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.04

1.02

1.00

0.98

0.96

Sp
ar

se
 re

tu
rn

PPO

(a)

0

20

40

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.04

1.02

1.00

0.98

0.96

Sp
ar

se
 re

tu
rn

PPO + partial invalid action masking

(b)

0

50

100

150

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.0

0.5

0.0

0.5

Sp
ar

se
 re

tu
rn

PPO + invalid action masking
 + diverse opponents + IMPALA-CNN

(c)

10

15

20

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.04

1.02

1.00

0.98

0.96

Sp
ar

se
 re

tu
rn

PPO + naive invalid action masking

(d)

50

100

150

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.0

0.5

0.0

0.5

Sp
ar

se
 re

tu
rn

PPO + invalid action masking
 + diverse opponents

(e)

0

50

100

150

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

1.0

0.5

0.0

0.5

Sp
ar

se
 re

tu
rn

PPO + invalid action masking
 + diverse opponents + IMPALA-CNN

(f)

Figure B.2: Gridnet learning curves.

Appendix B: Gym-µRTS B.2 Learning curves and match results

94

140

160

180

Sh
ap

ed
 re

tu
rn

Seed 1
Seed 2
Seed 3
Seed 4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e8

0.1

0.0

0.1

0.2

Sp
ar

se
 re

tu
rn

PPO + invalid action masking
+ selfplay + encoder-decoder

(a)

50

100

150
Sh

ap
ed

 re
tu

rn

Seed 1
Seed 2
Seed 3
Seed 4

0.0 0.5 1.0 1.5 2.0
1e8

1.0

0.5

0.0

0.5

Sp
ar

se
 re

tu
rn

PPO + invalid action masking +
half self-play / half bots + encoder-decoder

(b)

Figure B.3: Gridnet selfplay learning curves.

Appendix B: Gym-µRTS B.2 Learning curves and match results

95

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO

(a)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + partial invalid action masking

(b)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + invalid action masking

(c)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + naive invalid action masking

(d)

Figure B.4: UAS match results.

Appendix B: Gym-µRTS B.2 Learning curves and match results

96

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + invalid action masking
+ diverse opponents + IMPALA-CNN

(e)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + invalid action masking
 + diverse opponents

(f)

Figure B.4: UAS match results.

Appendix B: Gym-µRTS B.2 Learning curves and match results

97

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO

(a)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + partial invalid action masking

(b)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + invalid action masking

(c)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + naive invalid action masking

(d)

Figure B.5: Gridnet match results.

Appendix B: Gym-µRTS B.2 Learning curves and match results

98

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + invalid action masking
 + diverse opponents

(e)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + invalid action masking
 + diverse opponents + IMPALA-CNN

(f)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + invalid action masking
+ selfplay + encoder-decoder

(g)

0

25

50

75

100
randomBiasedAI passiveAI workerRushAI

0

25

50

75

100
lightRushAI coacAI naiveMCTSAI

0

25

50

75

100
mixedBot rojo izanagi

loss tie win
0

25

50

75

100
tiamat

loss tie win

droplet

loss tie win

guidedRojoA3N

PPO + invalid action masking +
half self-play / half bots + encoder-decoder

(h)

Figure B.5: Gridnet match results.

Appendix B: Gym-µRTS B.2 Learning curves and match results

99

Appendix C: Cleanba

C.1 Detailed experiment settings

For the experiments, the PPO and IMPALA’s hyperparameters can be found in Table C.1 and C.2.
The Vtrace implementation can be found in rlax1. The learning curves can be found at Figure C.1.

Table C.1: PPO hyperparameters.

Parameter Names Parameter Values

Ntotal Total Time Steps 50,000,000
α Learning Rate 0.00025 Linearly Decreased to 0
Nenvs Number of Environments 120
Nsteps Number of Steps per Environment 128
γ (Discount Factor) 0.99
λ (for GAE) 0.95
Nmb Number of Mini-batches 4
K (Number of PPO Update Iteration Per Epoch) 4
ε (PPO’s Clipping Coefficient) 0.1
c1 (Value Function Coefficient) 0.5
c2 (Entropy Coefficient) 0.01
ω (Gradient Norm Threshold) 0.5
Value Function Loss Clipping False

Table C.2: IMPALA hyperparameters.

Parameter Names Parameter Values

Ntotal Total Time Steps 50,000,000
α Learning Rate 0.00025 Linearly Decreased to 0
Nenvs Number of Environments 128
Nsteps Number of Steps per Environment 128
γ (Discount Factor) 0.99
λ (mixing parameter) 1.0
Nmb Number of Mini-batches 4
ρ (Clip Threshold for Importance Ratios) 1.0
ρpg (Clip Threshold for Policy Gradient Importance Ratios) 1.0
c1 (Value Function Coefficient) 0.5
c2 (Entropy Coefficient) 0.01
ω (Gradient Norm Threshold) 0.5

C.2 moolib Experiments

We conducted two sets of moolib experiments and reported the set with a lower median and higher
IQM, as shown in Figure C.2 for legacy reasons. During our debugging, we found the Asteroids

1https://github.com/deepmind/rlax/blob/b53c6510c8b2cad6b106b6166e22aba61a77ee2f/rlax/_src/vtrace.

py#L162-L193

https://github.com/deepmind/rlax/blob/b53c6510c8b2cad6b106b6166e22aba61a77ee2f/rlax/_src/vtrace.py#L162-L193
https://github.com/deepmind/rlax/blob/b53c6510c8b2cad6b106b6166e22aba61a77ee2f/rlax/_src/vtrace.py#L162-L193

100

experiments in the first set of moolib experiments to obtain high scores, but we ran Asteroids
specifically for ten random seeds and found lower scores; this suggests the Asteroids experiments in
the first set were likely due to lucky random seeds, so we re-run the moolib experiments.

Appendix C: Cleanba C.2 moolib Experiments

101

C.3 torchbeast logs

$ python -m torchbeast.monobeast_study \

--num_actors 80 \

--total_steps 10000000 \

--learning_rate 0.0006 \

--epsilon 0.01 \

--entropy_cost 0.01 \

--batch_size 8 \

--unroll_length 240 \

--num_threads 1 \

--env Pong-v5

actor_index 32 initial policy_version 8 policy_version after rollout 20

actor_index 13 initial policy_version 8 policy_version after rollout 20

actor_index 57 initial policy_version 8 policy_version after rollout 20

actor_index 12 initial policy_version 8 policy_version after rollout 21

actor_index 51 initial policy_version 8 policy_version after rollout 21

actor_index 2 initial policy_version 8 policy_version after rollout 21

actor_index 56 initial policy_version 8 policy_version after rollout 21

actor_index 38 initial policy_version 9 policy_version after rollout 21

actor_index 37 initial policy_version 9 policy_version after rollout 22

actor_index 59 initial policy_version 9 policy_version after rollout 22

actor_index 9 initial policy_version 9 policy_version after rollout 22

actor_index 69 initial policy_version 9 policy_version after rollout 22

actor_index 35 initial policy_version 9 policy_version after rollout 22

actor_index 66 initial policy_version 9 policy_version after rollout 22

actor_index 10 initial policy_version 9 policy_version after rollout 22

actor_index 55 initial policy_version 10 policy_version after rollout 22

actor_index 53 initial policy_version 10 policy_version after rollout 22

actor_index 46 initial policy_version 10 policy_version after rollout 22

actor_index 54 initial policy_version 10 policy_version after rollout 23

actor_index 50 initial policy_version 10 policy_version after rollout 23

actor_index 8 initial policy_version 10 policy_version after rollout 23

actor_index 64 initial policy_version 10 policy_version after rollout 23

actor_index 77 initial policy_version 10 policy_version after rollout 23

actor_index 3 initial policy_version 11 policy_version after rollout 23

actor_index 7 initial policy_version 11 policy_version after rollout 23

actor_index 28 initial policy_version 11 policy_version after rollout 23

actor_index 49 initial policy_version 11 policy_version after rollout 23

actor_index 16 initial policy_version 11 policy_version after rollout 23

actor_index 24 initial policy_version 11 policy_version after rollout 23

actor_index 11 initial policy_version 11 policy_version after rollout 23

actor_index 14 initial policy_version 11 policy_version after rollout 23

actor_index 43 initial policy_version 13 policy_version after rollout 26

actor_index 58 initial policy_version 13 policy_version after rollout 26

actor_index 23 initial policy_version 13 policy_version after rollout 26

actor_index 29 initial policy_version 13 policy_version after rollout 26

actor_index 68 initial policy_version 13 policy_version after rollout 26

actor_index 75 initial policy_version 14 policy_version after rollout 26

actor_index 48 initial policy_version 14 policy_version after rollout 27

actor_index 67 initial policy_version 14 policy_version after rollout 27

actor_index 5 initial policy_version 14 policy_version after rollout 27

actor_index 18 initial policy_version 14 policy_version after rollout 27

Appendix C: Cleanba C.3 torchbeast logs

102

actor_index 41 initial policy_version 15 policy_version after rollout 27

actor_index 78 initial policy_version 14 policy_version after rollout 27

actor_index 15 initial policy_version 15 policy_version after rollout 27

actor_index 34 initial policy_version 15 policy_version after rollout 27

actor_index 45 initial policy_version 15 policy_version after rollout 28

actor_index 22 initial policy_version 15 policy_version after rollout 28

actor_index 4 initial policy_version 16 policy_version after rollout 28

actor_index 6 initial policy_version 16 policy_version after rollout 28

actor_index 20 initial policy_version 16 policy_version after rollout 28

actor_index 39 initial policy_version 16 policy_version after rollout 28

actor_index 33 initial policy_version 16 policy_version after rollout 29

actor_index 74 initial policy_version 16 policy_version after rollout 29

actor_index 60 initial policy_version 16 policy_version after rollout 29

actor_index 42 initial policy_version 17 policy_version after rollout 29

actor_index 72 initial policy_version 17 policy_version after rollout 30

actor_index 25 initial policy_version 17 policy_version after rollout 30

actor_index 31 initial policy_version 17 policy_version after rollout 30

actor_index 19 initial policy_version 17 policy_version after rollout 30

actor_index 1 initial policy_version 18 policy_version after rollout 31

actor_index 79 initial policy_version 18 policy_version after rollout 31

actor_index 65 initial policy_version 18 policy_version after rollout 31

actor_index 73 initial policy_version 18 policy_version after rollout 31

actor_index 36 initial policy_version 18 policy_version after rollout 31

actor_index 21 initial policy_version 18 policy_version after rollout 31

actor_index 0 initial policy_version 18 policy_version after rollout 31

actor_index 30 initial policy_version 18 policy_version after rollout 31

actor_index 44 initial policy_version 18 policy_version after rollout 31

actor_index 63 initial policy_version 19 policy_version after rollout 31

actor_index 76 initial policy_version 19 policy_version after rollout 32

actor_index 47 initial policy_version 19 policy_version after rollout 32

actor_index 52 initial policy_version 19 policy_version after rollout 32

actor_index 26 initial policy_version 19 policy_version after rollout 32

actor_index 71 initial policy_version 19 policy_version after rollout 32

actor_index 70 initial policy_version 19 policy_version after rollout 32

actor_index 17 initial policy_version 20 policy_version after rollout 32

actor_index 62 initial policy_version 20 policy_version after rollout 33

actor_index 40 initial policy_version 20 policy_version after rollout 33

actor_index 27 initial policy_version 20 policy_version after rollout 33

actor_index 13 initial policy_version 20 policy_version after rollout 33

actor_index 57 initial policy_version 20 policy_version after rollout 33

actor_index 32 initial policy_version 20 policy_version after rollout 33

actor_index 51 initial policy_version 21 policy_version after rollout 33

actor_index 61 initial policy_version 20 policy_version after rollout 33

actor_index 2 initial policy_version 21 policy_version after rollout 33

actor_index 56 initial policy_version 21 policy_version after rollout 34

actor_index 12 initial policy_version 21 policy_version after rollout 34

$ python -m torchbeast.monobeast_study \

--num_actors 80 \

--total_steps 10000000 \

--learning_rate 0.0006 \

--epsilon 0.01 \

--entropy_cost 0.01 \

Appendix C: Cleanba C.3 torchbeast logs

103

--batch_size 8 \

--unroll_length 240 \

--num_threads 1 \

--env Pong-v5 \

--learner_delay_seconds 1.0

actor_index 72 initial policy_version 9 policy_version after rollout 10

actor_index 22 initial policy_version 9 policy_version after rollout 10

actor_index 37 initial policy_version 9 policy_version after rollout 10

actor_index 41 initial policy_version 9 policy_version after rollout 10

actor_index 16 initial policy_version 9 policy_version after rollout 10

actor_index 61 initial policy_version 10 policy_version after rollout 11

actor_index 18 initial policy_version 10 policy_version after rollout 11

actor_index 13 initial policy_version 10 policy_version after rollout 11

actor_index 56 initial policy_version 10 policy_version after rollout 11

actor_index 28 initial policy_version 10 policy_version after rollout 11

actor_index 4 initial policy_version 10 policy_version after rollout 11

actor_index 7 initial policy_version 10 policy_version after rollout 11

actor_index 65 initial policy_version 10 policy_version after rollout 11

actor_index 12 initial policy_version 11 policy_version after rollout 12

actor_index 14 initial policy_version 11 policy_version after rollout 12

actor_index 5 initial policy_version 11 policy_version after rollout 12

actor_index 3 initial policy_version 11 policy_version after rollout 12

actor_index 35 initial policy_version 11 policy_version after rollout 12

actor_index 51 initial policy_version 11 policy_version after rollout 12

actor_index 0 initial policy_version 11 policy_version after rollout 12

actor_index 6 initial policy_version 11 policy_version after rollout 12

actor_index 60 initial policy_version 12 policy_version after rollout 13

actor_index 77 initial policy_version 12 policy_version after rollout 13

actor_index 48 initial policy_version 12 policy_version after rollout 13

$ python -m torchbeast.monobeast_study \

--num_actors 40 \

--total_steps 10000000 \

--learning_rate 0.0006 \

--epsilon 0.01 \

--entropy_cost 0.01 \

--batch_size 8 \

--unroll_length 240 \

--num_threads 1 \

--env Pong-v5

actor_index 34 initial policy_version 12 policy_version after rollout 18

actor_index 25 initial policy_version 13 policy_version after rollout 18

actor_index 4 initial policy_version 13 policy_version after rollout 18

actor_index 5 initial policy_version 13 policy_version after rollout 18

actor_index 14 initial policy_version 13 policy_version after rollout 18

actor_index 16 initial policy_version 13 policy_version after rollout 18

actor_index 12 initial policy_version 13 policy_version after rollout 18

actor_index 39 initial policy_version 13 policy_version after rollout 18

actor_index 30 initial policy_version 13 policy_version after rollout 18

actor_index 18 initial policy_version 13 policy_version after rollout 18

actor_index 13 initial policy_version 13 policy_version after rollout 18

actor_index 23 initial policy_version 13 policy_version after rollout 19

Appendix C: Cleanba C.3 torchbeast logs

104

actor_index 35 initial policy_version 13 policy_version after rollout 19

actor_index 3 initial policy_version 14 policy_version after rollout 19

actor_index 17 initial policy_version 14 policy_version after rollout 19

actor_index 9 initial policy_version 14 policy_version after rollout 19

actor_index 6 initial policy_version 14 policy_version after rollout 19

C.4 Large Batch Size Training

Cleanba can also scale to the hundreds of GPUs in multi-host and multi-process environments by
leveraging the jax.distributed package, allowing us to explore training with even larger batch
sizes. We conduct experiments with 16, 32, 64, and 128 A100 GPUs. For convenience, we also
adjust a few settings: 1) turn off the learning rate annealing, 2) run for 100M steps instead of the
standard 50M steps, and 3) keep doubling the num envs, batch size, and minibatch size with a
larger number of GPUs.

Due to hardware scheduling constraints, we only ran the experiments for 1 random seed. The
results are shown in Figure C.3. We make the following observations:

• Linear scaling w/ 93% of ideal scaling efficiency. As we increased the number of GPUs
to 16, 32, 64, 128, we observed a linear scaling in steps per second (SPS) in Cleanba achieving
93% of the ideal scaling efficiency. This is likely empowered by the fast connectivity offered
by NVIDIA GPUDirect RDMA (remote direct memory access) in Stability AI’s HPC. When
using 128 GPUs, the agent has an SPS of 403253, translating to over 1.6M FPS in Breakout.

• Small batch sizes train more efficiently. As we increase batch sizes, particularly in the
first 40M steps, the sample efficiency tends to decline. This outcome is unsurprising, given
that the initial policy is random and Breakout initially has limited explorable game states. In
this case, the data in the batch is going to have less diverse data, which makes the large batch
size less valuable.

• Large batch sizes train more quickly. Like156, we find increasing the batch size does
make the agent reach some given scores faster. This suggests that we could always increase
the batch size to obtain shorter training times if sample efficiency is not a concern.

While we observed limited benefits of scaling Cleanba to use 128 GPUs, the objective of the scaling
experiments is to show we can scale to large batch sizes. Given a more challenging task, the training
data is likely going to be more diverse and have a higher gradient noise scale 156, which would help
the agent utilize large batch sizes more efficiently, resulting in a reduced decline in sample efficiency.

C.5 torchbeast logs

poetry run python -m torchbeast.monobeast_study_new --exp-name monobeast_cpu80_unroll_length240 --num_actors 80 --total_steps 10000000 --learning_rate 0.0006 --epsilon 0.01 --entropy_cost 0.01 --batch_size 8 --unroll_length 240 --num_threads 1 --env Pong-v5

actor_index 32 initial policy_version 8 policy_version after rollout 20

actor_index 13 initial policy_version 8 policy_version after rollout 20

actor_index 57 initial policy_version 8 policy_version after rollout 20

actor_index 12 initial policy_version 8 policy_version after rollout 21

actor_index 51 initial policy_version 8 policy_version after rollout 21

actor_index 2 initial policy_version 8 policy_version after rollout 21

actor_index 56 initial policy_version 8 policy_version after rollout 21

actor_index 38 initial policy_version 9 policy_version after rollout 21

actor_index 37 initial policy_version 9 policy_version after rollout 22

actor_index 59 initial policy_version 9 policy_version after rollout 22

actor_index 9 initial policy_version 9 policy_version after rollout 22

actor_index 69 initial policy_version 9 policy_version after rollout 22

Appendix C: Cleanba C.4 Large Batch Size Training

105

actor_index 35 initial policy_version 9 policy_version after rollout 22

actor_index 66 initial policy_version 9 policy_version after rollout 22

actor_index 10 initial policy_version 9 policy_version after rollout 22

actor_index 55 initial policy_version 10 policy_version after rollout 22

actor_index 53 initial policy_version 10 policy_version after rollout 22

actor_index 46 initial policy_version 10 policy_version after rollout 22

actor_index 54 initial policy_version 10 policy_version after rollout 23

actor_index 50 initial policy_version 10 policy_version after rollout 23

actor_index 8 initial policy_version 10 policy_version after rollout 23

actor_index 64 initial policy_version 10 policy_version after rollout 23

actor_index 77 initial policy_version 10 policy_version after rollout 23

actor_index 3 initial policy_version 11 policy_version after rollout 23

actor_index 7 initial policy_version 11 policy_version after rollout 23

actor_index 28 initial policy_version 11 policy_version after rollout 23

actor_index 49 initial policy_version 11 policy_version after rollout 23

actor_index 16 initial policy_version 11 policy_version after rollout 23

actor_index 24 initial policy_version 11 policy_version after rollout 23

actor_index 11 initial policy_version 11 policy_version after rollout 23

actor_index 14 initial policy_version 11 policy_version after rollout 23

actor_index 43 initial policy_version 13 policy_version after rollout 26

actor_index 58 initial policy_version 13 policy_version after rollout 26

actor_index 23 initial policy_version 13 policy_version after rollout 26

actor_index 29 initial policy_version 13 policy_version after rollout 26

actor_index 68 initial policy_version 13 policy_version after rollout 26

actor_index 75 initial policy_version 14 policy_version after rollout 26

actor_index 48 initial policy_version 14 policy_version after rollout 27

actor_index 67 initial policy_version 14 policy_version after rollout 27

actor_index 5 initial policy_version 14 policy_version after rollout 27

actor_index 18 initial policy_version 14 policy_version after rollout 27

actor_index 41 initial policy_version 15 policy_version after rollout 27

actor_index 78 initial policy_version 14 policy_version after rollout 27

actor_index 15 initial policy_version 15 policy_version after rollout 27

actor_index 34 initial policy_version 15 policy_version after rollout 27

actor_index 45 initial policy_version 15 policy_version after rollout 28

actor_index 22 initial policy_version 15 policy_version after rollout 28

actor_index 4 initial policy_version 16 policy_version after rollout 28

actor_index 6 initial policy_version 16 policy_version after rollout 28

actor_index 20 initial policy_version 16 policy_version after rollout 28

actor_index 39 initial policy_version 16 policy_version after rollout 28

actor_index 33 initial policy_version 16 policy_version after rollout 29

actor_index 74 initial policy_version 16 policy_version after rollout 29

actor_index 60 initial policy_version 16 policy_version after rollout 29

actor_index 42 initial policy_version 17 policy_version after rollout 29

actor_index 72 initial policy_version 17 policy_version after rollout 30

actor_index 25 initial policy_version 17 policy_version after rollout 30

actor_index 31 initial policy_version 17 policy_version after rollout 30

actor_index 19 initial policy_version 17 policy_version after rollout 30

actor_index 1 initial policy_version 18 policy_version after rollout 31

actor_index 79 initial policy_version 18 policy_version after rollout 31

actor_index 65 initial policy_version 18 policy_version after rollout 31

actor_index 73 initial policy_version 18 policy_version after rollout 31

actor_index 36 initial policy_version 18 policy_version after rollout 31

actor_index 21 initial policy_version 18 policy_version after rollout 31

actor_index 0 initial policy_version 18 policy_version after rollout 31

Appendix C: Cleanba C.5 torchbeast logs

106

actor_index 30 initial policy_version 18 policy_version after rollout 31

actor_index 44 initial policy_version 18 policy_version after rollout 31

actor_index 63 initial policy_version 19 policy_version after rollout 31

actor_index 76 initial policy_version 19 policy_version after rollout 32

actor_index 47 initial policy_version 19 policy_version after rollout 32

actor_index 52 initial policy_version 19 policy_version after rollout 32

actor_index 26 initial policy_version 19 policy_version after rollout 32

actor_index 71 initial policy_version 19 policy_version after rollout 32

actor_index 70 initial policy_version 19 policy_version after rollout 32

actor_index 17 initial policy_version 20 policy_version after rollout 32

actor_index 62 initial policy_version 20 policy_version after rollout 33

actor_index 40 initial policy_version 20 policy_version after rollout 33

actor_index 27 initial policy_version 20 policy_version after rollout 33

actor_index 13 initial policy_version 20 policy_version after rollout 33

actor_index 57 initial policy_version 20 policy_version after rollout 33

actor_index 32 initial policy_version 20 policy_version after rollout 33

actor_index 51 initial policy_version 21 policy_version after rollout 33

actor_index 61 initial policy_version 20 policy_version after rollout 33

actor_index 2 initial policy_version 21 policy_version after rollout 33

actor_index 56 initial policy_version 21 policy_version after rollout 34

actor_index 12 initial policy_version 21 policy_version after rollout 34

poetry run python -m torchbeast.monobeast_study_new --exp-name monobeast_cpu80_unroll_length240 --num_actors 80 --total_steps 10000000 --learning_rate 0.0006 --epsilon 0.01 --entropy_cost 0.01 --batch_size 8 --unroll_length 240 --num_threads 1 --env Pong-v5 --learner_delay_seconds 1.0

actor_index 72 initial policy_version 9 policy_version after rollout 10

actor_index 22 initial policy_version 9 policy_version after rollout 10

actor_index 37 initial policy_version 9 policy_version after rollout 10

actor_index 41 initial policy_version 9 policy_version after rollout 10

actor_index 16 initial policy_version 9 policy_version after rollout 10

actor_index 61 initial policy_version 10 policy_version after rollout 11

actor_index 18 initial policy_version 10 policy_version after rollout 11

actor_index 13 initial policy_version 10 policy_version after rollout 11

actor_index 56 initial policy_version 10 policy_version after rollout 11

actor_index 28 initial policy_version 10 policy_version after rollout 11

actor_index 4 initial policy_version 10 policy_version after rollout 11

actor_index 7 initial policy_version 10 policy_version after rollout 11

actor_index 65 initial policy_version 10 policy_version after rollout 11

actor_index 12 initial policy_version 11 policy_version after rollout 12

actor_index 14 initial policy_version 11 policy_version after rollout 12

actor_index 5 initial policy_version 11 policy_version after rollout 12

actor_index 3 initial policy_version 11 policy_version after rollout 12

actor_index 35 initial policy_version 11 policy_version after rollout 12

actor_index 51 initial policy_version 11 policy_version after rollout 12

actor_index 0 initial policy_version 11 policy_version after rollout 12

actor_index 6 initial policy_version 11 policy_version after rollout 12

actor_index 60 initial policy_version 12 policy_version after rollout 13

actor_index 77 initial policy_version 12 policy_version after rollout 13

actor_index 48 initial policy_version 12 policy_version after rollout 13

poetry run python -m torchbeast.monobeast_study_new --num_actors 40 --total_steps 10000000 --learning_rate 0.0006 --epsilon 0.01 --entropy_cost 0.01 --batch_size 8 --unroll_length 240 --num_threads 1 --env Pong-v5

actor_index 34 initial policy_version 12 policy_version after rollout 18

actor_index 25 initial policy_version 13 policy_version after rollout 18

Appendix C: Cleanba C.5 torchbeast logs

107

actor_index 4 initial policy_version 13 policy_version after rollout 18

actor_index 5 initial policy_version 13 policy_version after rollout 18

actor_index 14 initial policy_version 13 policy_version after rollout 18

actor_index 16 initial policy_version 13 policy_version after rollout 18

actor_index 12 initial policy_version 13 policy_version after rollout 18

actor_index 39 initial policy_version 13 policy_version after rollout 18

actor_index 30 initial policy_version 13 policy_version after rollout 18

actor_index 18 initial policy_version 13 policy_version after rollout 18

actor_index 13 initial policy_version 13 policy_version after rollout 18

actor_index 23 initial policy_version 13 policy_version after rollout 19

actor_index 35 initial policy_version 13 policy_version after rollout 19

actor_index 3 initial policy_version 14 policy_version after rollout 19

actor_index 17 initial policy_version 14 policy_version after rollout 19

actor_index 9 initial policy_version 14 policy_version after rollout 19

actor_index 6 initial policy_version 14 policy_version after rollout 19

Appendix C: Cleanba C.5 torchbeast logs

108

0M 20M 40M
0

2500

5000

7500

Alien-v5

0M 20M 40M
0

500

1000

Amidar-v5

0M 20M 40M

2000

4000

6000
Assault-v5

0M 20M 40M
0

200000

400000

600000

Asterix-v5

0M 20M 40M

0

50000

Asteroids-v5

0M 20M 40M
0.0

0.5

1.0
1e6 Atlantis-v5

0M 20M 40M
0

500

1000

BankHeist-v5

0M 20M 40M
0

20000

40000

BattleZone-v5

0M 20M 40M
0

5000

10000

15000
BeamRider-v5

0M 20M 40M

1000

2000

Berzerk-v5

0M 20M 40M
20

40

60

Bowling-v5

0M 20M 40M
0

50

100

Boxing-v5

0M 20M 40M
0

200

400

600
Breakout-v5

0M 20M 40M

2000

4000

6000
Centipede-v5

0M 20M 40M
0

10000

20000

ChopperCommand-v5

0M 20M 40M
0

50000

100000

CrazyClimber-v5

0M 20M 40M
0

50000

100000

Defender-v5

0M 20M 40M
0

50000

100000

DemonAttack-v5

0M 20M 40M
20

10

0

DoubleDunk-v5

0M 20M 40M
0

1000

2000

Enduro-v5

0M 20M 40M
100

50

0

50
FishingDerby-v5

0M 20M 40M
0

20

40
Freeway-v5

0M 20M 40M
0

2500

5000

7500

Frostbite-v5

0M 20M 40M
0

20000

40000

Gopher-v5

0M 20M 40M
0

2000

4000
Gravitar-v5

0M 20M 40M
0

20000

Hero-v5

0M 20M 40M

0

20
IceHockey-v5

0M 20M 40M
0

250

500

750

Jamesbond-v5

0M 20M 40M

0

10000

Kangaroo-v5

0M 20M 40M

2500

5000

7500

10000
Krull-v5

0M 20M 40M
0

25000

50000

75000

KungFuMaster-v5

0M 20M 40M

0

200

MontezumaRevenge-v5

0M 20M 40M

2000

4000

6000
MsPacman-v5

0M 20M 40M

5000

10000

15000

20000
NameThisGame-v5

0M 20M 40M
0

25000

50000

75000
Phoenix-v5

0M 20M 40M

200

100

0
Pitfall-v5

0M 20M 40M
20

0

20
Pong-v5

0M 20M 40M
200

0

200

400

PrivateEye-v5

0M 20M 40M
0

10000

20000

Qbert-v5

0M 20M 40M
0

10000

20000

Riverraid-v5

0M 20M 40M
0

100000

200000
RoadRunner-v5

0M 20M 40M
0

20

40

Robotank-v5

0M 20M 40M

1000

2000

Seaquest-v5

0M 20M 40M

30000

20000

10000

Skiing-v5

0M 20M 40M

2000

3000

Solaris-v5

0M 20M 40M
0

20000

40000

SpaceInvaders-v5

0M 20M 40M
0

50000

100000

150000
StarGunner-v5

0M 20M 40M
10

0

Surround-v5

0M 20M 40M

20

0

20
Tennis-v5

0M 20M 40M
0

10000

20000

30000

TimePilot-v5

0M 20M 40M

100

200

Tutankham-v5

0M 20M 40M
0

100000

200000

300000

UpNDown-v5

0M 20M 40M

0

200

400

Venture-v5

0M 20M 40M
0

200000

400000

600000

VideoPinball-v5

0M 20M 40M
0

5000

10000

WizardOfWor-v5

0M 20M 40M

50000

100000
YarsRevenge-v5

0M 20M 40M
0

10000

20000

30000
Zaxxon-v5

Step

Ep
iso

di
c

Re
tu

rn

Moolib IMPALA, 1 A100, 10 CPU
Moolib IMPALA, 8 A100, 80 CPU
Cleanba IMPALA, 1 A100, 10 CPU
Cleanba IMPALA, 8 A100, 50 CPU

Cleanba PPO, 1 A100, 10 CPU
Cleanba PPO, 8 A100, 50 CPU
Monobeast IMPALA, 1 A100, 10 CPU
Monobeast IMPALA, 1 A100, 80 CPU

CleanRL PPO (Sync), 1 A100, 10 CPU
Cleanba PPO (Sync), 8 A100, 50 CPU
Cleanba IMPALA (Sync), 8 A100, 50 CPU

Figure C.1: The learning curves of the experiments.

Appendix C: Cleanba C.5 torchbeast logs

109

0M 10M 20M 30M 40M 50M
Steps

0.0

0.5

1.0

1.5

M
ed

ia
n

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

0 25 50 75 100 125 150
Time (m)

Moolib (Resnet CNN, 1nd set 3 seeds) 1 A100, 10 CPU Moolib (Resnet CNN, 2nd set 3 seeds) 1 A100, 10 CPU

1.20 1.35 1.50
Moolib (Resnet CNN, 2nd set 3 seeds) 1 A100, 10 CPU
Moolib (Resnet CNN, 1nd set 3 seeds) 1 A100, 10 CPU

Median

1.4 1.5 1.6 1.7

IQM

6 9 12 15

Mean

0.28 0.32 0.36 0.40

Optimality Gap

0M 10M 20M 30M 40M 50M
Steps

0.0

0.5

1.0

1.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

0 2 4 6 8
Human Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Figure C.2: Top figure: the median human-normalized scores of the two sets of moolib exper-
iments. Middle figure: the IQM human-normalized scores and performance profile1. Bottom
figure: the average runtime in minutes and aggregate human normalized score metrics with 95%
stratified bootstrap CIs.

Figure C.3: Cleanba’s results from large batch size training. b=15360 denotes
batch size=15360.

Appendix C: Cleanba C.5 torchbeast logs

110

20 40 60 80 100 120
Number of GPUs

100000

200000

300000

400000

St
ep

s p
er

 S
ec

on
d

(S
PS

)

Ideal SPS
Actual SPS
(Scaling Efficiency 0.93)

Figure C.4: Cleanba’s SPS scaling results from large batch size training.

Appendix C: Cleanba C.5 torchbeast logs

111

Bibliography

[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

[2] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[3] Xue Han and Edward S Boyden. Multiple-color optical activation, silencing, and desynchro-
nization of neural activity, with single-spike temporal resolution. PloS one, 2(3):e299, 2007.

[4] Stuart J Russell. Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

[5] Ruslan Salakhutdinov. Deep learning. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec,
Wei Wang, and Rayid Ghani, editors, The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27,
2014, page 1973. ACM, 2014. doi: 10.1145/2623330.2630809. URL https://doi.org/10.

1145/2623330.2630809.

[6] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[7] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/

hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[10] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[12] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[14] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gra-
dient methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

https://doi.org/10.1145/2623330.2630809
https://doi.org/10.1145/2623330.2630809
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

112

[15] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceed-
ings of the 33nd International Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages
1928–1937. JMLR.org, 2016. URL http://proceedings.mlr.press/v48/mniha16.html.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. ArXiv preprint, abs/1707.06347, 2017. URL https://arxiv.

org/abs/1707.06347.

[17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[18] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many random seeds? statistical
power analysis in deep reinforcement learning experiments. arXiv preprint arXiv:1806.08295,
2018.

[19] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust
region policy optimization. In Francis R. Bach and David M. Blei, editors, Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 1889–1897. JMLR.org,
2015. URL http://proceedings.mlr.press/v37/schulman15.html.

[20] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo
and trpo. In International Conference on Learning Representations, 2020. URL https://

openreview.net/forum?id=r1etN1rtPB.

[21] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain
Gelly, and Olivier Bachem. What matters for on-policy deep actor-critic methods? a large-
scale study. In International Conference on Learning Representations, 2021. URL https:

//openreview.net/forum?id=nIAxjsniDzg.

[22] Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto,
and Weixun Wang. The 37 implementation details of proximal policy optimization.
In ICLR Blog Track, 2022. URL https://iclr-blog-track.github.io/2022/03/25/

ppo-implementation-details/.

[23] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Com-
bining improvements in deep reinforcement learning. In Sheila A. McIlraith and Kilian Q.
Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages 3215–3222. AAAI Press, 2018. URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204.

[24] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van
Hasselt, and David Silver. Distributed prioritized experience replay. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.

net/forum?id=H1Dy---0Z.

[25] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl:
Scalable and efficient deep-rl with accelerated central inference. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=rkgvXlrKwH.

Bibliography

http://proceedings.mlr.press/v48/mniha16.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://proceedings.mlr.press/v37/schulman15.html
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=nIAxjsniDzg
https://openreview.net/forum?id=nIAxjsniDzg
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://openreview.net/forum?id=H1Dy---0Z
https://openreview.net/forum?id=H1Dy---0Z
https://openreview.net/forum?id=rkgvXlrKwH

113

[26] Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos. Recur-
rent experience replay in distributed reinforcement learning. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=r1lyTjAqYX.

[27] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grand-
master level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–
354, 2019.

[28] Johan S Obando-Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more in-
sightful and inclusive deep reinforcement learning research. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, Proceedings of Machine Learning Research. PMLR,
2021.

[29] Michael Buro. Real-time strategy games: A new ai research challenge. In IJCAI, volume 2003,
pages 1534–1535, 2003.

[30] Santiago Ontanón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David Churchill, and
Mike Preuss. A survey of real-time strategy game ai research and competition in starcraft.
IEEE Transactions on Computational Intelligence and AI in games, 5(4):293–311, 2013.

[31] Shengyi Huang and Santiago Ontañón. Comparing observation and action representations for
deep reinforcement learning in µrts. AIIDE Workshop on Artificial Intelligence for Strategy
Games, 2019.

[32] Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational
overfitting in reinforcement learning. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=HJli2hNKDH.

[33] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[34] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.
IMPALA: scalable distributed deep-rl with importance weighted actor-learner architectures. In
Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 1406–1415. PMLR, 2018. URL
http://proceedings.mlr.press/v80/espeholt18a.html.

[35] Shengyi Huang, Santiago Ontañón, Chris Bamford, and Lukasz Grela. Gym-µrts: Toward
affordable full game real-time strategy games research with deep reinforcement learning. In
2021 IEEE Conference on Games (CoG), pages 1–8. IEEE, 2021.

[36] Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy
gradient algorithms. volume 35, May 2022. doi: 10.32473/flairs.v35i.130584. URL https:

//journals.flvc.org/FLAIRS/article/view/130584.

[37] Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng YAN. Envpool: A
highly parallel reinforcement learning environment execution engine. In Thirty-sixth Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL
https://openreview.net/forum?id=BubxnHpuMbG.

[38] Rhys Compton, Ilya Valmianski, Li Deng, Costa Huang, Namit Katariya, Xavier Amatriain,
and Anitha Kannan. Medcod: A medically-accurate, emotive, diverse, and controllable dialog
system. In Machine Learning for Health, pages 110–129. PMLR, 2021.

Bibliography

https://openreview.net/forum?id=r1lyTjAqYX
https://openreview.net/forum?id=HJli2hNKDH
https://github.com/openai/baselines
http://proceedings.mlr.press/v80/espeholt18a.html
https://journals.flvc.org/FLAIRS/article/view/130584
https://journals.flvc.org/FLAIRS/article/view/130584
https://openreview.net/forum?id=BubxnHpuMbG

114

[39] Chris Bamford, Shengyi Huang, and Simon Lucas. Griddly: A platform for ai research in
games, 2020.

[40] Shengyi Huang and Santiago Ontañón. Action guidance: Getting the best of sparse rewards
and shaped rewards for real-time strategy games. AIIDE Workshop on Artificial Intelligence
for Strategy Games, abs/2010.03956, 2020. URL https://arxiv.org/abs/2010.03956.

[41] Shengyi Huang, Anssi Kanervisto, Antonin Raffin, Weixun Wang, Santiago Ontañón, and
Rousslan Fernand Julien Dossa. A2c is a special case of ppo, 2022.

[42] Shengyi Huang and Santiago Ontañón. Measuring generalization of deep reinforcement learn-
ing with real-time strategy games. AAAI Reinforcement Learning in Games Workshop, 2021.

[43] Rousslan Fernand Julien Dossa, Shengyi Huang, Santiago Ontañón, and Takashi Matsubara.
An empirical investigation of early stopping optimizations in proximal policy optimization.
IEEE Access, 9:117981–117992, 2021.

[44] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html.

[45] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[46] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio
and Yann LeCun, editors, 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1506.02438.

[47] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[48] John Schulman. Optimizing Expectations: From Deep Reinforcement Learning to Stochastic
Computation Graphs. PhD thesis, EECS Department, University of California, Berkeley, Dec
2016. URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-217.html.

[49] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[50] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. ArXiv preprint, abs/1606.01540, 2016. URL https:

//arxiv.org/abs/1606.01540.

[51] Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Mom-
chev, Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent,
Léonard Hussenot, Robert Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan
Ferret, Nino Vieillard, Seyed Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin,
Feryal Behbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate
Baumli, Sarah Henderson, Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Col-
menarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie,
Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research framework for distributed
reinforcement learning, 2020.

[52] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pages
679–684, 1957.

Bibliography

https://arxiv.org/abs/2010.03956
http://jmlr.org/papers/v23/21-1342.html
http://arxiv.org/abs/1506.02438
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-217.html
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540

115

[53] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA, pages 2094–2100. AAAI Press, 2016. URL http://www.aaai.org/ocs/index.php/

AAAI/AAAI16/paper/view/12389.

[54] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.05952.

[55] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on rein-
forcement learning. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pages 449–458. PMLR,
2017. URL http://proceedings.mlr.press/v70/bellemare17a.html.

[56] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvit-
skyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari hu-
man benchmark. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 507–517. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/

v119/badia20a.html.

[57] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Fre-
itas. Dueling network architectures for deep reinforcement learning. In Maria-Florina Bal-
can and Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48
of JMLR Workshop and Conference Proceedings, pages 1995–2003. JMLR.org, 2016. URL
http://proceedings.mlr.press/v48/wangf16.html.

[58] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel,
Ian Osband, Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin,
Charles Blundell, and Shane Legg. Noisy networks for exploration. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.

net/forum?id=rywHCPkAW.

[59] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[60] Yuhuai Wu, Elman Mansimov, Roger B. Grosse, Shun Liao, and Jimmy Ba. Scalable trust-
region method for deep reinforcement learning using kronecker-factored approximation. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5279–5288, 2017. URL https://proceedings.neurips.

cc/paper/2017/hash/361440528766bbaaaa1901845cf4152b-Abstract.html.

[61] Chris Nota and Philip S. Thomas. Is the policy gradient a gradient? In Proceedings of
the 19th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’20, page 939–947, Richland, SC, 2020. International Foundation for Autonomous Agents and
Multiagent Systems. ISBN 9781450375184.

[62] Shangtong Zhang, Romain Laroche, Harm van Seijen, Shimon Whiteson, and Rémi Tachet
des Combes. A deeper look at discounting mismatch in actor-critic algorithms. In AAMAS,
2022.

Bibliography

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://arxiv.org/abs/1511.05952
http://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v119/badia20a.html
https://proceedings.mlr.press/v119/badia20a.html
http://proceedings.mlr.press/v48/wangf16.html
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rywHCPkAW
https://proceedings.neurips.cc/paper/2017/hash/361440528766bbaaaa1901845cf4152b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/361440528766bbaaaa1901845cf4152b-Abstract.html

116

[63] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[64] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. In 5th Inter-
national Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/

forum?id=HyM25Mqel.

[65] Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse Espe-
holt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain
Gelly. Google research football: A novel reinforcement learning environment. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 4501–4510. AAAI Press, 2020. URL https://aaai.org/ojs/index.php/

AAAI/article/view/5878.

[66] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub W. Pachocki, Michael Petrov, Henrique Pond’e
de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szy-
mon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large
scale deep reinforcement learning. ArXiv preprint, abs/1912.06680, 2019. URL https:

//arxiv.org/abs/1912.06680.

[67] Peng Sun, Xinghai Sun, Lei Han, Jiechao Xiong, Qing Wang, Bo Li, Yang Zheng, Ji Liu,
Yongsheng Liu, Han Liu, et al. Tstarbots: Defeating the cheating level builtin ai in starcraft
ii in the full game. ArXiv preprint, abs/1809.07193, 2018. URL https://arxiv.org/abs/

1809.07193.

[68] Andrew B Kahng. Ai system outperforms humans in designing floorplans for microchips, 2021.

[69] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1509.02971.

[70] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1582–1591. PMLR, 2018. URL http://proceedings.mlr.press/v80/fujimoto18a.html.

[71] Yannis Flet-Berliac. Sample-efficient deep reinforcement learning for control, exploration and
safety. PhD thesis, Université de Lille, 2021.

[72] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State.
Isaac gym: High performance GPU based physics simulation for robot learning. In Thirty-
fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=fgFBtYgJQX_.

[73] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

Bibliography

https://openreview.net/forum?id=HyM25Mqel
https://openreview.net/forum?id=HyM25Mqel
https://aaai.org/ojs/index.php/AAAI/article/view/5878
https://aaai.org/ojs/index.php/AAAI/article/view/5878
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1809.07193
https://arxiv.org/abs/1809.07193
http://arxiv.org/abs/1509.02971
http://proceedings.mlr.press/v80/fujimoto18a.html
https://openreview.net/forum?id=fgFBtYgJQX_

117

[74] Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa,
Christian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for
natural language processing?: Benchmarks, baselines, and building blocks for natural language
policy optimization. 2022. URL https://arxiv.org/abs/2210.01241.

[75] Jan Kossmann, Alexander Kastius, and Rainer Schlosser. Swirl: Selection of workload-aware
indexes using reinforcement learning. In EDBT, pages 2–155, 2022.

[76] Hyoungsik Nam, Young-In Kim, Jina Bae, and Junhee Lee. Gaterl: Automated circuit design
framework of cmos logic gates using reinforcement learning. Electronics, 10(9):1032, 2021.

[77] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement
methodology for fast chip design. Nature, 594(7862):207–212, 2021.

[78] Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun.
Sample factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous rein-
forcement learning. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learn-
ing Research, pages 7652–7662. PMLR, 2020. URL http://proceedings.mlr.press/v119/

petrenko20a.html.

[79] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural
generation to benchmark reinforcement learning. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pages 2048–2056. PMLR, 2020. URL http:

//proceedings.mlr.press/v119/cobbe20a.html.

[80] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1lJJnR5Ym.

[81] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. ArXiv
preprint, abs/1312.5602, 2013. URL https://arxiv.org/abs/1312.5602.

[82] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Ma-
chine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.

html.

[83] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning, pages 3053–3062. PMLR, 2018.

[84] Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Mush-
roomrl: Simplifying reinforcement learning research. Journal of Machine Learning Research,
2020.

[85] Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. Chainerrl: A
deep reinforcement learning library. Journal of Machine Learning Research, 22(77):1–14, 2021.

[86] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su,
Hang Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library.
Journal of Machine Learning Research, 23(267):1–6, 2022. URL http://jmlr.org/papers/

v23/21-1127.html.

Bibliography

https://arxiv.org/abs/2210.01241
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
https://openreview.net/forum?id=H1lJJnR5Ym
https://arxiv.org/abs/1312.5602
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html

118

[87] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[88] Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In
International Conference on Machine Learning, pages 2020–2027. PMLR, 2021.

[89] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.

wandb.com/. Software available from wandb.com.

[90] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
to follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

[91] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International conference on learning
representations, 2019.

[92] Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio
Viola, and Hado van Hasselt. Podracer architectures for scalable reinforcement learning. arXiv
preprint arXiv:2104.06272, 2021.

[93] Vegard Mella, Eric Hambro, Danielle Rothermel, and Heinrich Küttler. moolib: A Platform
for Distributed RL. 2022. URL https://github.com/facebookresearch/moolib.

[94] Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. Rein-
forcement learning through asynchronous advantage actor-critic on a GPU. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=

r1VGvBcxl.

[95] Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning. arXiv
preprint arXiv:1803.02811, 2018.

[96] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Mano-
lis Savva, and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from
2.5 billion frames. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=H1gX8C4YPr.

[97] Iou-Jen Liu, Raymond A. Yeh, and Alexander G. Schwing. High-throughput synchronous
deep RL. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

c6447300d99fdbf4f3f7966295b8b5be-Abstract.html.

[98] Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar,
Tim Rocktäschel, and Edward Grefenstette. Torchbeast: A pytorch platform for distributed
rl. arXiv preprint arXiv:1910.03552, 2019.

[99] C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax–a differentiable physics engine for large scale rigid body simulation. arXiv
preprint arXiv:2106.13281, 2021.

[100] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al.
Jax: composable transformations of python+ numpy programs. 2018.

Bibliography

https://www.wandb.com/
https://www.wandb.com/
https://github.com/facebookresearch/moolib
https://openreview.net/forum?id=r1VGvBcxl
https://openreview.net/forum?id=r1VGvBcxl
https://openreview.net/forum?id=H1gX8C4YPr
https://proceedings.neurips.cc/paper/2020/hash/c6447300d99fdbf4f3f7966295b8b5be-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c6447300d99fdbf4f3f7966295b8b5be-Abstract.html

119

[101] Ryan Sullivan, Jordan K Terry, Benjamin Black, and John P Dickerson. Cliff diving: Exploring
reward surfaces in reinforcement learning environments. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 20744–20776. PMLR, 17–23 Jul 2022. URL https://proceedings.

mlr.press/v162/sullivan22a.html.

[102] Bhaskara Marthi, Stuart J Russell, David Latham, and Carlos Guestrin. Concurrent hierar-
chical reinforcement learning. In IJCAI, pages 779–785, 2005.

[103] U Jaidee and H Muñoz-Avila. Modeling unit classes as agents in real-time strategy games.
Proceedings of the 9th AAAI Conference on Artificial Intelligence and Interactive Digital En-
tertainment, AIIDE 2013, pages 149–155, 01 2013.

[104] Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International
Symposium on abstraction, reformulation, and approximation, pages 212–223. Springer, 2002.

[105] Anderson R. Tavares and Luiz Chaimowicz. Tabular reinforcement learning in real-time strat-
egy games via options. 2018 IEEE Conference on Computational Intelligence and Games
(CIG), pages 1–8, 2018.

[106] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. Nature, 550(7676):354, 2017.

[107] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. ArXiv preprint, abs/1708.04782, 2017.
URL https://arxiv.org/abs/1708.04782.

[108] Yuandong Tian, Qucheng Gong, Wenling Shang, Yuxin Wu, and C Lawrence Zitnick. Elf: An
extensive, lightweight and flexible research platform for real-time strategy games. In Advances
in Neural Information Processing Systems, pages 2659–2669, 2017.

[109] Ruo-Ze Liu, Haifeng Guo, Xiaozhong Ji, Yang Yu, Zitai Xiao, Yuzhou Wu, Zhen-Jia Pang,
and Tong Lu. Efficient reinforcement learning with a mind-game for full-length starcraft ii.
arXiv preprint arXiv:1903.00715, 2019.

[110] Dennis Lee, Haoran Tang, Jeffrey O Zhang, Huazhe Xu, Trevor Darrell, and Pieter Abbeel.
Modular architecture for starcraft ii with deep reinforcement learning. In Fourteenth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2018.

[111] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. ArXiv preprint, abs/1902.04043, 2019. URL
https://arxiv.org/abs/1902.04043.

[112] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-
agent reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

[113] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[114] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius
Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls,
et al. Value-decomposition networks for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296, 2017.

Bibliography

https://proceedings.mlr.press/v162/sullivan22a.html
https://proceedings.mlr.press/v162/sullivan22a.html
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1902.04043

120

[115] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru,
Jaan Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement
learning. PloS one, 12(4):e0172395, 2017.

[116] Zuozhi Yang and Santiago Ontañón. Learning map-independent evaluation functions for real-
time strategy games. 2018 IEEE Conference on Computational Intelligence and Games (CIG),
pages 1–7, 2018.

[117] Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, HaoWu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, Qiaobo Chen, Yinyuting Yin, Hao Zhang, Tengfei Shi, Liang Wang,
Qiang Fu, Wei Yang, and Lanxiao Huang. Mastering complex control in MOBA games with
deep reinforcement learning. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 6672–6679. AAAI Press, 2020.
URL https://aaai.org/ojs/index.php/AAAI/article/view/6144.

[118] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep
reinforcement learning in large discrete action spaces. ArXiv preprint, abs/1512.07679, 2015.
URL https://arxiv.org/abs/1512.07679.

[119] Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J. Mankowitz, and Shie Mannor. Learn
what not to learn: Action elimination with deep reinforcement learning. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pages 3566–3577, 2018. URL https://proceedings.neurips.cc/paper/

2018/hash/645098b086d2f9e1e0e939c27f9f2d6f-Abstract.html.

[120] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping in deep
reinforcement learning. ArXiv preprint, abs/2004.00980, 2020. URL https://arxiv.org/

abs/2004.00980.

[121] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform
for artificial intelligence experimentation. In Subbarao Kambhampati, editor, Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pages 4246–4247. IJCAI/AAAI Press, 2016. URL
http://www.ijcai.org/Abstract/16/643.

[122] Marius Stanescu, Nicolas A. Barriga, Andy Hess, and Michael Buro. Evaluating real-time
strategy game states using convolutional neural networks. 2016. doi: 10.1109/CIG.2016.
7860439.

[123] Matthew J. Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action
space. In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learn-
ing Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016. URL http://arxiv.org/abs/1511.04143.

[124] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function de-
composition. Journal of artificial intelligence research, 13:227–303, 2000.

[125] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[126] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction. In Doina Precup and Yee Whye Teh, editors, Proceed-
ings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,

Bibliography

https://aaai.org/ojs/index.php/AAAI/article/view/6144
https://arxiv.org/abs/1512.07679
https://proceedings.neurips.cc/paper/2018/hash/645098b086d2f9e1e0e939c27f9f2d6f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/645098b086d2f9e1e0e939c27f9f2d6f-Abstract.html
https://arxiv.org/abs/2004.00980
https://arxiv.org/abs/2004.00980
http://www.ijcai.org/Abstract/16/643
http://arxiv.org/abs/1511.04143

121

Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages
2778–2787. PMLR, 2017. URL http://proceedings.mlr.press/v70/pathak17a.html.

[127] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. 1999.

[128] Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task mappings for
temporal difference learning. J. Mach. Learn. Res., 8:2125–2167, 2007.

[129] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and Peter Stone.
Automatic curriculum graph generation for reinforcement learning agents. In Satinder P. Singh
and Shaul Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA, pages 2590–2596. AAAI
Press, 2017. URL http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14961.

[130] Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning.
ArXiv preprint, abs/1812.00285, 2018. URL https://arxiv.org/abs/1812.00285.

[131] Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelli-
gence 15, pages 103–129, 1995.

[132] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning.
In Carla E. Brodley, editor, Machine Learning, Proceedings of the Twenty-first International
Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, volume 69 of ACM In-
ternational Conference Proceeding Series. ACM, 2004. doi: 10.1145/1015330.1015430. URL
https://doi.org/10.1145/1015330.1015430.

[133] Yuri Burda, Harrison Edwards, Deepak Pathak, Amos J. Storkey, Trevor Darrell, and Alexei A.
Efros. Large-scale study of curiosity-driven learning. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=rJNwDjAqYX.

[134] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Curiosity-driven exploration in deep reinforcement learning via bayesian neural networks. 2016.

[135] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton,
and Rémi Munos. Unifying count-based exploration and intrinsic motivation. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 1471–1479, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/

afda332245e2af431fb7b672a68b659d-Abstract.html.

[136] Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in model-
based reinforcement learning by empirically estimating learning progress. In Peter L. Bartlett,
Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States, pages 206–214, 2012. URL https://proceedings.

neurips.cc/paper/2012/hash/a0a080f42e6f13b3a2df133f073095dd-Abstract.html.

[137] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-
proximators. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37
of JMLR Workshop and Conference Proceedings, pages 1312–1320. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/schaul15.html.

Bibliography

http://proceedings.mlr.press/v70/pathak17a.html
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14961
https://arxiv.org/abs/1812.00285
https://doi.org/10.1145/1015330.1015430
https://openreview.net/forum?id=rJNwDjAqYX
https://proceedings.neurips.cc/paper/2016/hash/afda332245e2af431fb7b672a68b659d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/afda332245e2af431fb7b672a68b659d-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/a0a080f42e6f13b3a2df133f073095dd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/a0a080f42e6f13b3a2df133f073095dd-Abstract.html
http://proceedings.mlr.press/v37/schaul15.html

122

[138] Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5048–5058, 2017. URL https://proceedings.neurips.

cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html.

[139] Zhen-Jia Pang, Ruo-Ze Liu, Zhou-Yu Meng, Yi Zhang, Yang Yu, and Tong Lu. On rein-
forcement learning for full-length game of starcraft. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019, pages 4691–4698. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33014691. URL
https://doi.org/10.1609/aaai.v33i01.33014691.

[140] Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, HaoWu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, Qiaobo Chen, Yinyuting Yin, Hao Zhang, Tengfei Shi, Liang Wang,
Qiang Fu, Wei Yang, and Lanxiao Huang. Mastering complex control in MOBA games with
deep reinforcement learning. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 6672–6679. AAAI Press, 2020.
URL https://aaai.org/ojs/index.php/AAAI/article/view/6144.

[141] Martin A. Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave,
Tom Van de Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by
playing solving sparse reward tasks from scratch. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 4341–4350. PMLR, 2018. URL http://proceedings.mlr.press/

v80/riedmiller18a.html.

[142] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. ArXiv preprint,
abs/1205.4839, 2012. URL https://arxiv.org/abs/1205.4839.

[143] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. ArXiv preprint, abs/2005.01643, 2020.
URL https://arxiv.org/abs/2005.01643.

[144] Lei Han, Jiechao Xiong, Peng Sun, Xinghai Sun, Meng Fang, Qingwei Guo, Qiaobo Chen,
Tengfei Shi, Hongsheng Yu, and Zhengyou Zhang. Tstarbot-x: An open-sourced and com-
prehensive study for efficient league training in starcraft ii full game. ArXiv preprint,
abs/2011.13729, 2020. URL https://arxiv.org/abs/2011.13729.

[145] Santiago Ontanón. The combinatorial multi-armed bandit problem and its application to real-
time strategy games. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 9, 2013.

[146] Ulit Jaidee and Héctor Muñoz-Avila. Classq-l: A q-learning algorithm for adversarial real-
time strategy games. In Eighth Artificial Intelligence and Interactive Digital Entertainment
Conference, 2012.

[147] Ben Weber and Michael Mateas. Case-based reasoning for build order in real-time strategy
games. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 4, 2009.

Bibliography

https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://doi.org/10.1609/aaai.v33i01.33014691
https://aaai.org/ojs/index.php/AAAI/article/view/6144
http://proceedings.mlr.press/v80/riedmiller18a.html
http://proceedings.mlr.press/v80/riedmiller18a.html
https://arxiv.org/abs/1205.4839
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2011.13729

123

[148] Santi Ontanón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram. On-line case-based plan-
ning. Computational Intelligence, 26(1):84–119, 2010.

[149] Radha-Krishna Balla and Alan Fern. Uct for tactical assault planning in real-time strategy
games. In Proceedings of the 21st international jont conference on Artifical intelligence, pages
40–45, 2009.

[150] David Churchill, Abdallah Saffidine, and Michael Buro. Fast heuristic search for rts game com-
bat scenarios. In Proceedings of the AAAI conference on artificial intelligence and interactive
digital entertainment, volume 8, 2012.

[151] Niels Justesen, Bálint Tillman, Julian Togelius, and Sebastian Risi. Script-and cluster-based
uct for starcraft. In 2014 IEEE Conference on Computational Intelligence and Games, pages
1–8. IEEE, 2014.

[152] Santiago Ontanón. Combinatorial multi-armed bandits for real-time strategy games. Journal
of Artificial Intelligence Research, 58:665–702, 2017.

[153] Per-Arne Andersen, Morten Goodwin, and Ole-Christoffer Granmo. Deep rts: a game envi-
ronment for deep reinforcement learning in real-time strategy games. In 2018 IEEE conference
on computational intelligence and games (CIG), pages 1–8. IEEE, 2018.

[154] Lei Han, Peng Sun, Yali Du, Jiechao Xiong, Qing Wang, Xinghai Sun, Han Liu, and Tong
Zhang. Grid-wise control for multi-agent reinforcement learning in video game AI. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 2576–2585. PMLR, 2019. URL
http://proceedings.mlr.press/v97/han19a.html.

[155] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. Lecture Notes in Computer Science, page 630–645, 2016. ISSN 1611-3349. doi:
10.1007/978-3-319-46493-0 38. URL http://dx.doi.org/10.1007/978-3-319-46493-0_38.

[156] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Bibliography

http://proceedings.mlr.press/v97/han19a.html
http://dx.doi.org/10.1007/978-3-319-46493-0_38

	Front Matter
	Title Page
	Copyright Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Reinforcement Learning
	Deep Learning
	Deep Reinforcement Learning
	Problem Statement
	Contributions

	Background
	Markov Decision Processes
	The Learning Problem
	Common RL Environments
	Value-based Methods
	Deep Value-based Methods

	Policy-based Methods
	Deep Actor-critic Methods
	Deep Off-policy Actor-critic Methods

	Acknolwedgement

	Reproducibility in Deep Reinforcement Learning
	Demystifying PPO
	Authorship
	Motivation
	Background
	38 Implementation Details
	Discussions
	Does modularity help RL libraries?
	Is asynchronous PPO better?
	Solving Pong in 5 minutes with PPO + Envpool
	Request for Research

	Conclusion

	CleanRL
	Authorship
	Motivation
	Single-file Implementations
	Documentation and Benchmark
	When to Use CleanRL

	Cleanba
	Authorship
	Motivation
	Background
	Preliminaries
	Reproducibility Issues in IMPALA
	Non-determinisim of IMPALA's Architecture
	Algorithmic Reproducibility Issues

	Towards Reproducible Distributed DRL
	Decoupling hyperparameters and hardware settings
	Deterministic Rollout Data Composition

	Experiments
	Comparison with moolib's IMPALA
	Comparison with monobeast's IMPALA
	Comparison with CleanRL's PPO

	Conclusion

	Efficient Deep Reinforcement Learning Testbeds and Techniques
	Game Representation
	Motivation
	Background
	Gym-µRTS: Comparing Game Representations
	Global Representation
	Local Representation
	Reward Function

	Experimental Study
	Experimental Setup
	Experimental Results
	Visual Behavior of Agents

	Discussion

	Invalid Action Masking
	Motivation
	Background
	Invalid Action Masking
	Masking Still Produces a Valid Policy Gradient

	Experimental Study
	Evaluation Environment
	Training Algorithm
	Strategies to Handle Invalid Actions
	Evaluation Metrics
	Evaluation Results

	Conclusions

	Action Guidance
	Motivation
	Background
	Action Guidance
	Practical Algorithm
	Positive Learning Optimization

	Experimental Study
	Tasks Description
	Agent Setup
	Experimental Results

	Discussion

	Unit-level Control
	Authorship
	Motivation
	Background
	Gym-RTS: Unit-level Control
	Observation Space.
	Action Space.
	The Action Spaces of Gym-RTS and PySC2
	Reward Function

	Experimental Study
	Action Composition
	Invalid Action Masking
	Other augmentations

	Discussion
	Conclusions and Future Work

	Conclusion
	Contributions
	Future Work

	Back Matter
	Appendix
	CleanRL
	Benchmark experiments
	Proximal Policy Optimization Variants and Performance
	Deep Deterministic Policy Gradient Variant and Performance
	Twin-Delayed Deep Deterministic Policy Gradient Variant and Performance
	Soft Actor-Critic Variant and Performance
	Phasic Policy Gradient Variant and Performance
	Deep Q-learning Variants and Performance
	Categorical Deep Q-learning Variants and Performance

	Interactive Shell
	Maintaining Single-file Implementations
	W&B Editing Panel
	Stepping Through Stable-baselines 3 Code with a Debugger

	Gym-RTS
	Estimated AlphaStar cost
	Learning curves and match results

	Cleanba
	Detailed experiment settings
	moolib Experiments
	torchbeast logs
	Large Batch Size Training
	torchbeast logs

	Bibliography

